Role of Digital Circuit

Revisit of MOSFET Switch Operation

	Symbol	G = 0	G = 1
NMOSFET		D d o S	D o o S
PMOSFET	G -qC S	D d d S	D d o s

Realization of NAND2 Operation

Α	В	Y
0	0	1
0	1	1
1	0	1
1	1	0

"1" → 3V "0" → 0V

Inverter & NOR2

Α	В	Y
0	0	1
0	1	0
1	0	0
1	1	0

Question: Which is Faster?

• Suppose that you want to achieve OR2 operation, Z = A+B

- How about power? Area?
- Is there any other better design in terms of PPA?

MOSFET Backgrounds

Hanwool Jeong hwjeong@kw.ac.kr

How Speed is Determined

- Delay in a digital circuit
 - → Time required for signal propagation in terms of voltage change

• Why do we need a finite "time" for signal propagation?

Voltage Change

- Charge moves and voltage changes → Takes time! How much?
- Or, how can we speed up the circuit?
 - 1) More charge moves per time
 - 2) Even with smaller charge, voltage can be easily changed
- Have you heard of two following things?
 - 1) Relation between charge move vs. time
 - 2) Relation between charge vs. Voltage change

We Should Know Current & Capacitor

Definition of current

• Definition of a capacitor

• Then how can we determine the speed?

Now We See What We Should Focus

• Current and capacitor in digital circuit

Quaitative Respect; Structure & Operation of MOSFET

Silicon As a Semiconductor Material

- Representative Material for Integrated Circuits
- Group IV → Covalent bonds with four adjacent atoms

N-type vs. P-type Semiconductor

	N-type (Extrinsic)	Intrinsic	P-type (Extrinsic)
Structure			
Majority Carrier	Electron	Hole density =	Hole
Minority Carrier	Hole	Electron density	Flectron
Dopant	Si Si Group VI		Graup Al Si B- Si
Si	Si Si	Si Si Si	Si Si Si

MOSFET; Semiconducting Device

- nMOS : Majority carriers are electrons
- pMOS : Majority carriers are holes
- Current flow is controlled by gate voltage

P-type Body MOS

Accumulation

Depletion

- Inversion
- **V**_t : Threshold voltage

Now We Will Incorporate Source & Drain

Source and drain are heavily doped silicon

➔ You can consider it as conductor

Channel potential matters.

 $V_g \uparrow \Rightarrow$ Channel region becomes more attractive to electron V_s or $V_d \uparrow \Rightarrow$ Channel region becomes less attractive to electron

Revisit of Turn-On Point

 $V_{GS} > V_t$: Turn on $V_{GS} < V_t$: Turn off

Meaning of Threshold Voltage

- The minimum V_{GS} that is needed to create a conducting path between the source and drain terminals.
- Effectively, you can consider it as "voltage drop across MOS"
 → Electron feels "V_G-V_t" instead of "V_G" at channel region.
- Sometimes, $V_{GS} V_t$ is defined as overdrive voltage V_{ov} as

$$V_{ov} = V_{GS} - V_t$$

Can you describe turn-on and turn-off of nMOSFET with V_{ov}?

nMOSFET; Cutoff

• $V_{GS} < V_t \text{ or } V_{ov} < 0$

Cutoff: No Channel $I_{ds} = 0$

nMOSFET; Turn-on with $V_{DS} = 0$

• What if V_{DS} becomes larger?

Effect of Drain Voltage on Channel Region

- $V_g \uparrow \rightarrow$ Channel region becomes more attractive to electron
- V_s or $V_D \uparrow \Rightarrow$ Channel region becomes less attractive to electron

nMOSFET; Linear

• Note that the shape of channel changes according to V_{DS}

Linear: Channel Formed I_{ds} Increases with V_{ds}

Channel Pinch-off

- Electron attraction by Gate vs. Electron attraction of Drain
- What if $V_D > V_{GS} V_t$

Why Can Electron be There?

- Why can electron be point X while it cannot exist right side?
- → Because at the right of X, drain is more attractive

If Electron Will At Right Side of X

•
$$V_{GS} = 2V, V_t = 0.5V, V_{DS} = 5V$$

• Potential formed by $V_{DS} > V_{GS} - V_t$

If Electron Will At Left Side of X

•
$$V_{GS} = 2V, V_t = 0.5V, V_{DS} = 5V$$

• Potential formed by $V_{DS} < V_{GS} - V_t$

At Point X

- $V_{GS} = 2V, V_t = 0.5V, V_{DS} = 5V$
- Potential formed by $V_{DS} = V_{GS} V_t$. That is, $V_x = V_{GS} V_t$

nMOSFET; Saturation

Saturation: Channel Pinched Off I_{ds} Independent of V_{ds}

Three nMOSFET Operation Modes

- $V_{GS} < V_t$: Cut off
- $V_{GS} > V_t$ and $V_{DS} < V_{GS} V_t$: Linear
- $V_{GS} > V_t$ and $V_{DS} < V_{GS} V_t$: Saturation

P-N Junction & Body Bias in nMOSFET

 For reverse bias, body is usually connected to lowest potential in nMOSFET

	Metal Gate	
	Oxide	
N+ Source	P-type Body	N+ Drain
	Body contact	

pMOSFET

- pMOSFET operates in the opposite fashion.
- The n-type body is tied to a high potential so the junctions

Quantitative Respect; I-V Characteristic of MOSFET

Drain Current Derivation

- Starting from the current definition $I_{DS} = Q/t$
- How can we derive Q in MOSFET?
 - Charge in channel region, $Q_{channel} = CV$.
 - ✓ Cap? → Gate capacitance, C_g
 - ✓ Voltage? → Gate-to-channel voltage (V_{gc}) with MOS V-drop, V_t
- That is,

Gate Capacitance

$$C_{g} = k_{ox} \varepsilon_{0} \frac{WL}{t_{ox}} = \varepsilon_{ox} \frac{WL}{t_{ox}} = C_{ox} WL$$

$\mathbf{V}_{\mathbf{gc}}$

$$V_{gc} = (V_{gs} + V_{gd})/2 = V_{gs} - V_{ds}/2$$

I_{DS} So Far

$$Q_{channel} = C_g(V_{gc} - V_t)$$
$$= C_{ox}LW (V_{GS} - V_{DS}/2 - V_t)$$

$$I_{DS} = C_{ox}LW (1/t)(V_{GS} - V_{DS}/2 - V_t)$$

Time?

- Voltage is noting but potential energy for unit charge
- Potential energy forms an electric field (=force for unit charge)
 Electric-Field = Voltage/Distance
- In our case, Electric-field = V_{DS}/L
- Can we use F = ma?
 → No, electrons only can be accelerated between collisions.
- Thus, over time, they move at the drift velocity (v) proportional to Electric-field, formulated by

$$v = \mu E$$

where μ is called mobility.

I_{DS}

$$Q_{channel} = C_g (V_{GC} - V_t)$$

= $C_{ox} LW (V_{GS} - V_{DS}/2 - V_t)$
$$I_{DS} = C_{ox} LW (1/t) (V_{GS} - V_{DS}/2 - V_t)$$

$$t = L / v$$

= L / μE
= L² / μV_{DS}

$$I_{DS} = \mu C_{ox} \frac{W}{L} (V_{GS} - V_{DS}/2 - V_{t}) V_{DS}$$

How About Channel Pinch-off?

- When $V_{ds} > V_{gs} V_t$, $v = \mu E$ does not hold any more and current is not dependent on V_{DS} .
- As $V_X = V_{GS} V_t$, we can insert $V_{GS} V_t$ into V_{DS} of the previously derived equation.

I_{DS} in Three Region

• Defining $\beta = \mu C_{ox}(W/L)$,

 $I_{ds} = \begin{cases} 0 & V_{gs} < V_t & \text{Cutoff} \\ \beta \left(V_{GT} - V_{ds} / 2 \right) V_{ds} & V_{ds} < V_{\text{dsat}} & \text{Linear} \\ \frac{\beta}{2} V_{GT}^2 & V_{ds} > V_{\text{dsat}} & \text{Saturation} \end{cases}$

I-V Curve in nMOSFET and pMOSFET

V_{DS} vs. L

- Effective channel length becomes smaller as V_{DS} is larger and pinched off length is larger
- This effect is called "channel length modulation."
- I_{DS} is not independent to V_{DS} even if $V_{DS} > V_{GS} V_t$.

I_{DS} Model w/ Channel Length Modulation

• V_{DS} dependent form is added to the saturation current expression.

$$I_{ds} = \begin{cases} 0 & V_{gs} < V_t & \text{Cutoff} \\ \beta \left(V_{GT} - V_{ds} / 2 \right) V_{ds} & V_{ds} < V_{dsat} & \text{Linear} \\ \frac{\beta}{2} V_{GT}^2 \left(1 + \frac{V_{DS}}{V_A} \right) & V_{ds} > V_{dsat} & \text{Saturation} \end{cases}$$