
Power (2)

Hanwool Jeong

hwjeong@kw.ac.kr

1

mailto:hwjeong@kw.ac.kr


Contents

• Introduction

• Dynamic Power

• Static Power

2



Dynamic Power
 Power required for switching



Switching Energy in CMOS Inverter

• Half of the energy (=half of power) is dissipated in the pMOS
transistor and the other half is delivered to the capacitor.

• Then the rest of half is dissipated in the nMOS
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IN = VDD0 OUT = 0VDD IN=0VDD
OUT = VDD  0 

pMOS dissipates ½ CVDD
2

Cout stores ½ CVDD
2

nMOS dissipates ½ CVDD
2

Eswitching = CoutVDD
2



Operational Waveform
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Short Circuit Current Energy
in CMOS Inverter

• There is a time duration that nMOS and pMOS simultaneously. 
This component is not included in CVDD

2 term.

• Provided that the slope of IN is not much small, the short 
circuit current portion is negligible. 

 It is important to note that signal slope matters!
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IN = ~VDD/2 OUT

Eshortcircuit = Ishortciurcuit×ton



Energy to Power (1);
Considering Clock Period

• We should first see “how often” digital circuit switches

• In general, digital circuit operates synchronous to “clock.”

• That is, can we say
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Digital Circuit

CLK Tclk = 1/fclk

Pswitching = Eswitching/Tclk = CoutVDD
2fclk ????

OUT



Energy to Power (2); Activity Factor &
Switching Period vs. Clock Period

• Note that a signal does not switch every clock.

• Define that a switching period Tsw = 1/fsw that says how 
often OUT experiences 0  1.

• fsw is smaller than fclk, so we can relate them utilizing α < 1, 

fsw = α × fclk : α = activity factor
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Digital Circuit

CLK Tclk = 1/fclk

OUT

OUT



Switching Power

• In conclusion, we can say

Pswitching = αCVDD
2fclk

 C is effective capacitance of all nodes
 α is the probability that the circuit node transitions from 0 to 1.

• A clock has an activity factor of α = 1 because it rises and 
falls every cycle.

• Most data has a maximum activity factor of 0.5 because it 
transitions only once each cycle. 

• Static CMOS logic has been empirically determined to have 
activity factors closer to 0.1
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Total Dynamic Power 

• Dynamic energy:

Edynamic = Eswitching + Eshortcircuit

• Dynamic power:

Pdynamic = Pswitching + Pshortcircuit

= αCVDD
2fclk+ Pshortcircuit ≈ αCVDD

2fclk

• We can reduce VDD or C to reduce power consumption. What 
is the counter effect of reducing VDD?
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How Can We Reduce Dynamic Power?

• Considering

Pdynamic = αCVDD
2fclk+ Pshortcircuit

1) Reducing α

2) Reducing C

3) Reducing VDD

4) Reducing Pshortcircuit
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1) Reducing α;
Power Saving by Clock Gating

• Clock gating ANDs a clock signal with an enable to turn off 
the clock to idle blocks. 
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Activity Factor 

• Define Pi to be the probability that node i is 1.  Pi= 1 – Pi is 
the probability that node i is 0. 

• αi , the activity factor of node i, is the probability that the 
node is 0 on one cycle and 1 on the next. 

• Completely random data has P = 0.5 and thus α = 0.25.

• Structured data may have different probabilities. 
• For example, the upper bits of a 64-bit unsigned integer 

representing a physical quantity such as the intensity of a sound or 
the amount of money in your bank account are 0 most of the time
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Switching Probabilities

• Can you derive the activity factor of the output?
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Glitches Related to α

• It is only the case when we assume zero propagation delay 

• However, in reality, gates sometimes make spurious transitions 
called glitches when inputs do not arrive simultaneously.
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ABCD :

1101

 0111

Activity factor 

can be above 1,

increasing the 

power consumption



2) Reducing C; Gate Sizing

• With logical effort, we can optimize the delay of digital circuit. 

• Then, how about the power? How does the gate sizing affect 
on the Pdynamic? You can consider the C effect in Pdynamic.

• With the assumption that unit inverter has gate cap 3C, we 
can represent the gate cap of a general logic gate with its g, 
p,and x.

• Then we can represent its dynamic power analytically to 
examine the effect of gate sizing on the power

• Then we can see how we can adjust sizing for reducing energy.
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Revisit Drive

• Generally, drive x is defined as (when Cin = 1 for the unit inverter)

x = Cin/g
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Dynamic Energy vs. Gate Sizing

• With the assumption that unit inverter has gate cap 3C, then 
a gate with logical effort g, parasitic delay p, and drive x has 
• gx times as much gate capacitance

• px times as much diffusion capacitance.

• Then can you derive the dynamic energy for circuit below?
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Logic gate

i

Logic gate

j=1

Logic gate

j=2

Logic gate

j=3

    

    

Energyi = CVDD
2 

= VDD
2 (pixi3C +Cwire)+ 𝑗 𝑔𝑗𝑥𝑗3C

= 3CVDD
2xi(pi+gihi+ci) = 3CVDD

2xidi



Dynamic Energy vs. Delay

• We can sum up the energy of all nodes i,
Must consider the activity difference among nodes.

E =  𝑖 𝛼𝑖3CVDD
2xidi 

• Then, we can define the normalized dynamic energy for C and 
V for given process, as follows by diving 3CVDD

2

 To only see the effect of sizing

E =  𝑖 𝛼𝑖xidi 

• You can derive delay vs. Energy curve using above equation.

• Or, you can seek to minimize E such that the worst-case 
arrival time is less than some delay D
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Dynamic Energy vs. Delay Curve 
Example
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3) Reducing VDD; 
Clustered Voltage Scaling

• Can we reduce VDD? 

• Reducing VDD reduces on current  Delay is increased.

• But you remember critical path? How about lowering VDD
selectively to non-critical path?
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Critical path = VDDH

Non-critical paths = VDDL



Issue at VDDL to VDDH Interface

• Even the output of the first stage inverter is high, the pMOS
in the second stage inverter can be turned on if VDDH – VDDL > 
Vth and burn current.

 To handle this problem, level shifter or level converter is 
required.
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VDDL VDDH

VSS VDDL

VSG 

= VDDH - VDDL

Can be

turned on!
Level

Shifter

VSS VDDL VDDH

Turned off

Solution



Level Shifter (Level Converter)

• Below shown is the level converter. How can it shift VDDL
signal into VDDH signal?
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Clustered Voltage Scaling
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Summary on Dynamic Power

• Pdynamic = αCVDD
2fclk+ Pshortcircuit ≈ αCVDD

2fclk

• Determination of activity factor and clock gating

• Energy-delay trade-off in gate sizing

• VDD can be lowered by clustering VDD domain but LC is 
required
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