Switch

- How is it implemented?
- → Of course, Transistor! nMOSFET or pMOSFET?

Buffer

- Have you seen the gate looking like below? Why is it useful?
- Can't we just use a switch?

➔ You may be able to tell why. Do you remember that larger stage of N does not necessarily increase delay?

Α	Υ
0	0
1	1

Which is Faster?

• The below example explains why we use a buffer.

Floating & Contention

• What would be the voltage of X in the following situation?

Floating

Contention

Switch, Buffer, & Tri-states

Hanwool Jeong hwjeong@kw.ac.kr

Switch Implementation

- ✓ Pass transistor; single nMOSFET or pMOSFET based switch
- ✓ Issues in pass transistor
- ✓ Transmission gate; switch without problem of pass transistor

Potential of MOSFETS as a Switch Operation

$V_{GS} \leq V_{th}$ in nMOSFET

• Note that the structure of MOSFET is symmetric.

• Can you reconsider the concept of source/drain?

$V_{GS} \leq V_{th}$ in pMOSFET

• Repeat that in the pMOSFET case!

We Can Just See The Gate Level

- No need to care about which are source or drain sides.
- You remember the following?

$V_{G} = V_{DD}$	V _G = 0
-0-0-	
	-0-0-

• More important thing is why the above table is not accurate.

When You Realize Switch Through an nMOSFET or pMOSFET

• When V_{DD} = 0.9V, "0" and "1" represent 0V and 0.9V, respectively.

Then, Let's Replace it with pMOSFET

• Is it okay?

Vth Drop Across Transistor

- You can summarize the problem as
 - pMOSFET switch can deliver "1" well but "0" very poorly.
 - nMOSFET switch can deliver "0" well but "1" very poorly.

Why is it Problematic?

• Suppose that what happens if it is connected to another gate as an input.

Pass Transistor

• They are widely used anyway. However, you must consider their limitations.

→ Is there any way we can deliver both "0" and "1" well?

Diode Connected MOSFET

Transmission Gate

• Either for "1" or "0," signal can be transferred without loss.

When Do We Need Pass TR or Transmission Gate?

- Certain path should be connected only for specific conditions.
- Otherwise, it should "disconnect" the path (More important).

Selective Connection

Multiplexer (MUX)

• MUX chooses the output from among inputs based on a select signal.

Selection Signal Circuit

• Given 2bit S input $-S_1$, S_0 – how can we implement a 4:1 MUX?

Speed and Signal Integrity of Transmission Gate

- ✓ Speed issue of transmission gate compared to CMOS inverter
- ✓ Signal integrity issue of transmission gate compared to CMOS inverter

Design Considerations

- Using Transmission gate may degrade the speed (Not always), and signal slope
- Using Transmission gate increases the noise sensitivity.

Revisit the RC Tree

- Elmore delay is determined as ΣR_iC_i
- Or simply, an increase in R or C degrades the signal propagation.

RC Tree Representation for CMOS Inverter

• One transistor exists between signal node and power rail.

RC Tree for Transmission Gate or Pass Transistor

• Additional "R" exists between signal node and power rail.

Inverter vs. TG

Effect of Path Connected w/ Transmission Gate

- It increases the effective resistance of the path to power rail.
- What if the cap of the driven node is very large?

Restoring Feature of Inverter

 When V_{DD} = 3V, how would the output of the inverter be at the steady state (=infinite time is passed)?

We can say a signal is restored in the CMOS inverter

Noise Sensitivity

- Suppose /A or /B is shocked by the noise. How would Y be?
- Sometimes, it is said as you should avoid the diffusion input.

How Can We Mitigate Speed & Noise Issue in TG?

✓ Defining tri-state

✓ Tristate inverter design

Can't We Use Buffer Instead?

- Buffer has the restoring capability.
- NO! It can't disconnect the path. Think of MUX example!

What We Need is

- Buffer is nothing but 2 stage inverters; we can focus on the inverter.
- What we need an inverter that can yield three states

Normally Being an Inverter but Disconnected when EN = 0

• You can start from the inverter

EN	Α	Υ
0	0	Disconnected
0	1	Disconnected
1	0	1
1	1	0

Tri-state Inverter

Symbol

EN	Α	Y
0	0	DisconPrected
0	1	Disconnected
1	0	1
1	1	0

EN	Υ
0	Z
1	/A

How About This?

• If the output is tristated but A toggles, charge from the internal nodes may disturb the floating output node.

Revisit the TG based 4:1 MUX

• (PMOS control signals is not shown)

Tri-state Inverter based 4:1 MUX

• (Again, pMOS control signals is not shown)

What We Have Learned

- \checkmark How switch can be implemented \Rightarrow Pass TR vs. TG
- ✓ TG operation its application (MUX) → Key is to disconnect
- ✓ Speed and Noise issue in TG → Tri-state inverter