CMOS NAND2; Any Other Way to NAND2 Implementation?

Logic Circuit Families (1)

Hanwool Jeong hwjeong@kw.ac.kr

Contents

- Pseudo nMOS
- Cascode Voltage Switch Logic
- Dynamic Circuit and Domino Logic
- Pass-Transistor Circuits

Pseudo nMOS

 \checkmark Constructing logic only with pull-down network

Look into How We Form A Logic!

- $Y = \overline{AB}$
- When you form pull-down network, what was your thought?

Α	В	Y
0	0	1
0	1	1
1	0	1
1	1	0

• All the required information is already included in the pulldown network.

Then How About This?

• Can really Y be decreased by AB = 1?

Α	В	Y
0	0	1
0	1	1
1	0	1
1	1	0

You Remember Contention?

• How is X determined?

→ Note that the current thru pMOS and nMOS (KCL) must be same.

Output by Contention Circuit

How is X determined? → Dependent on P-N Ratio.

$$V_{DD} = 1.2V$$

$$A = 0 - 4 \quad W = 4$$

$$\mu_p: \mu_n = 1:2$$

$$B = 1 - V = 1$$

$$V_{DD} = 1.2V$$

$$A = 0 - Q \quad \forall = 10$$

$$\mu_p: \mu_n = 1:2$$

$$B = 1 - \forall = 1$$

Voltage Transfer Curve (VTC)

 Recall that input vs. output at the steady state can be represented through VTC

Back to NAND2 Design

- Now, Y can be lowered sufficiently → Related to "Noise Margin"
- No problem for rising performance?

A	В	Y
0	0	1
0	1	1
1	0	1
1	1	0

Rising Procedure

• Y:0 → 1

Designing Ratioed Circuit

- Sizing constraint
 - Too strong pMOS : low output level is degraded (+Falling speed)
 - Too weak pMOS : Rising speed is degraded
- → We need a compromise between noise margin and speed.
- → For example, pMOS width is selected to have ¼ strength of pull-down network.
- For simplicity, we can start with inverter logic.

Example; Inverter Logic

- Assume $\mu_p:\mu_n = 1:2$, and
- Make the pull-up network strength is ¼ of pull-down network strength for noise margin.
- How to determine W_p and W_n to guarantee the same **effective** pull-down network strength?

Speed Comparison; NAND2

		CMOS NAND2	What we designed
Transisto Circu	or-level uit	$A \rightarrow W_{p}=2 W_{p}=2 P \rightarrow B$ $A \rightarrow W_{n}=2$ $B \rightarrow W_{n}=2$	$\mathbf{A} \rightarrow \mathbf{W}_{n} = 8/3$ $\mathbf{B} \rightarrow \mathbf{W}_{n} = 8/3$
Parasitic Delay	Rise	R×6C	$3R \times (10/_{3}C) = 10RC$
	Fall		$R \times (10/_{3}C) = 3.34RC$
Input Capa	acitance	4C	⁸ / ₃ C

Pseudo nMOS Logic

• You can also design an inverter, NAND3, NOR2, XOR2,.. Etc.

Speed Comparison; NOR2

		CMOS NOR2	Pseudo nMOS NOR2
Transisto Circu	r-level uit	$\mathbf{A} \rightarrow \mathbf{W}_{p} = 4$ $\mathbf{B} \rightarrow \mathbf{W}_{p} = 4$ $\mathbf{A} \rightarrow \mathbf{W}_{n} = 1$ $\mathbf{W}_{n} = 1$ $\mathbf{W}_{n} = 1$	$\mathbf{A} \rightarrow \begin{bmatrix} W_{p} = \frac{2}{3} \\ W_{n} = \frac{4}{3} \\ W_{n} = \frac{4}{3} \end{bmatrix} \begin{bmatrix} W_{n} = \frac{4}{3} \\ W_{n} = \frac{4}{3} \end{bmatrix} \begin{bmatrix} W_{n} = \frac{4}{3} \\ W_{n} = \frac{4}{3} \end{bmatrix} \begin{bmatrix} W_{n} = \frac{4}{3} \\ W_{n} = \frac{4}{3} \end{bmatrix} \begin{bmatrix} W_{n} = \frac{4}{3} \\ W_{n} = \frac{4}{3} \end{bmatrix} \begin{bmatrix} W_{n} = \frac{4}{3} \\ W_{n} = \frac{4}{3} \end{bmatrix} \begin{bmatrix} W_{n} = \frac{4}{3} \\ W_{n} = \frac{4}{3} \end{bmatrix} \begin{bmatrix} W_{n} = \frac{4}{3} \\ W_{n} = \frac{4}{3} \end{bmatrix} \begin{bmatrix} W_{n} = \frac{4}{3} \\ W_{n} = \frac{4}{3} \end{bmatrix} \begin{bmatrix} W_{n} = \frac{4}{3} \\ W_{n} = \frac{4}{3} \end{bmatrix} \begin{bmatrix} W_{n} = \frac{4}{3} \\ W_{n} = \frac{4}{3} \end{bmatrix} \begin{bmatrix} W_{n} = \frac{4}{3} \\ W_{n} = \frac{4}{3} \end{bmatrix} \begin{bmatrix} W_{n} = \frac{4}{3} \\ W_{n} = \frac{4}{3} \end{bmatrix} \begin{bmatrix} W_{n} = \frac{4}{3} \\ W_{n} = \frac{4}{3} \end{bmatrix} \begin{bmatrix} W_{n} = \frac{4}{3} \\ W_{n} = \frac{4}{3} \end{bmatrix} \begin{bmatrix} W_{n} = \frac{4}{3} \\ W_{n} = \frac{4}{3} \end{bmatrix} \begin{bmatrix} W_{n} = \frac{4}{3} \\ W_{n} = \frac{4}{3} \end{bmatrix} \begin{bmatrix} W_{n} = \frac{4}{3} \\ W_{n} = \frac{4}{3} \end{bmatrix} \begin{bmatrix} W_{n} = \frac{4}{3} \\ W_{n} = \frac{4}{3} \end{bmatrix} \begin{bmatrix} W_{n} = \frac{4}{3} \\ W_{n} = \frac{4}{3} \end{bmatrix} \begin{bmatrix} W_{n} = \frac{4}{3} \\ W_{n} = \frac{4}{3} \end{bmatrix} \begin{bmatrix} W_{n} = \frac{4}{3} \\ W_{n} = \frac{4}{3} \end{bmatrix} \begin{bmatrix} W_{n} = \frac{4}{3} \\ W_{n} = \frac{4}{3} \end{bmatrix} \begin{bmatrix} W_{n} = \frac{4}{3} \\ W_{n} = \frac{4}{3} \end{bmatrix} \begin{bmatrix} W_{n} = \frac{4}{3} \\ W_{n} = \frac{4}{3} \end{bmatrix} \begin{bmatrix} W_{n} = \frac{4}{3} \\ W_{n} = \frac{4}{3} \end{bmatrix} \begin{bmatrix} W_{n} = \frac{4}{3} \\ W_{n} = \frac{4}{3} \end{bmatrix} \begin{bmatrix} W_{n} = \frac{4}{3} \\ W_{n} = \frac{4}{3} \end{bmatrix} \begin{bmatrix} W_{n} = \frac{4}{3} \\ W_{n} = \frac{4}{3} \end{bmatrix} \begin{bmatrix} W_{n} = \frac{4}{3} \\ W_{n} = \frac{4}{3} \end{bmatrix} \begin{bmatrix} W_{n} = \frac{4}{3} \\ W_{n} = \frac{4}{3} \end{bmatrix} \begin{bmatrix} W_{n} = \frac{4}{3} \\ W_{n} = \frac{4}{3} \end{bmatrix} \begin{bmatrix} W_{n} = \frac{4}{3} \\ W_{n} = \frac{4}{3} \end{bmatrix} \begin{bmatrix} W_{n} = \frac{4}{3} \\ W_{n} = \frac{4}{3} \end{bmatrix} \begin{bmatrix} W_{n} = \frac{4}{3} \\ W_{n} = \frac{4}{3} \end{bmatrix} \begin{bmatrix} W_{n} = \frac{4}{3} \\ W_{n} = \frac{4}{3} \end{bmatrix} \begin{bmatrix} W_{n} = \frac{4}{3} \\ W_{n} = \frac{4}{3} \end{bmatrix} \begin{bmatrix} W_{n} = \frac{4}{3} \\ W_{n} = \frac{4}{3} \end{bmatrix} \begin{bmatrix} W_{n} = \frac{4}{3} \\ W_{n} = \frac{4}{3} \end{bmatrix} \begin{bmatrix} W_{n} = \frac{4}{3} \\ W_{n} = \frac{4}{3} \end{bmatrix} \begin{bmatrix} W_{n} = \frac{4}{3} \\ W_{n} = \frac{4}{3} \end{bmatrix} \begin{bmatrix} W_{n} = \frac{4}{3} \\ W_{n} = \frac{4}{3} \end{bmatrix} \begin{bmatrix} W_{n} = \frac{4}{3} \\ W_{n} = \frac{4}{3} \end{bmatrix} \begin{bmatrix} W_{n} = \frac{4}{3} \\ W_{n} = \frac{4}{3} \end{bmatrix} \begin{bmatrix} W_{n} = \frac{4}{3} \\ W_{n} = \frac{4}{3} \end{bmatrix} \begin{bmatrix} W_{n} = \frac{4}{3} \\ W_{n} = \frac{4}{3} \end{bmatrix} \begin{bmatrix} W_{n} = \frac{4}{3} \\ W_{n} = \frac{4}{3} \end{bmatrix} \begin{bmatrix} W_{n} = \frac{4}{3} \\ W_{n} = \frac{4}{3} \end{bmatrix} \begin{bmatrix} W_{n} = \frac{4}{3} \\ W_{n} = \frac{4}{3} \end{bmatrix} \begin{bmatrix} W_{n} = \frac{4}{3} \\ W_{n} = \frac{4}{3} \end{bmatrix} \begin{bmatrix} W_{n} = \frac{4}{3} \\ W_{n} = \frac{4}{3} \end{bmatrix} \begin{bmatrix} W_{n} = \frac{4}{3} \\ W_{n} = \frac{4}{3} \\ W_{n} = \frac{4}{3} \end{bmatrix} \begin{bmatrix} W_{n} = \frac{4}{3} \\ W_{n}$
Parasitic Delay	Rise	R×6C	$3R \times (10/_{3}C) = 10RC$
	Fall		$R \times (10/_{3}C) = 3.34RC$
Input Capa	acitance	4C	⁴ ∕₃C

Problem of Pseudo NMOS Static On-current for Pull-Down Enabled

• Static power consumption would be exceedingly large

➔ Non-practical

Cascode Voltage Switch Logic

✓ Constructing logic only with pull-down network

Revisit Pseudo nMOS NAND2

 Is there any way to block pull-up when Y is to be low by A=1 and B=1?

Generating Complementary Output

• How can we generate \overline{Y} ? = AB?

Combining Two Pseudo NMOS

• We call this type logic as cascade voltage switch logic (CVSL).

Operation

- A=1, B=1 PDN at the leftside is enabled
- Otherwise, PDN at the rightside is enabled
- Unlike pseudo-nMOS, the feedback tends to turn off the pMOS, so the outputs will settle eventually to a legal logic level.

CVSL Logics

How Does Cross-coupled FET Operate?

- You also saw this structure in the level shifter
- It operates in the positive feedback manner.

Level Shifter

CVSL