Logic Circuit Families (3)

Hanwool Jeong

hwjeong@kw.ac.kr

Contents

- Pseudo nMOS
- Cascode Voltage Switch Logic
- Dynamic Circuit and Domino Logic
- Pass-Transistor Circuits

Pass TR Logic Basic

- ✓ Motivation for using pass TR circuits
- ✓ Applying to MUX design

Pass TR vs. Transmission Gate

Pass Transistor

Transmission Gate

2:1 MUX Implementation

• Pass TR or TG can play a good role for achieving tri-state.

Key Difference of Pass TR from Other Logic Families

- A single TR accepts 2 inputs to determine 1 output.
- → Chance to reduce the number of TRs for MUX implementation.

4:1 MUX Example

Revisit the Role of Cross-Coupled PFET

- You also saw this structure in the level shifter
- It operates in the positive feedback manner.
- **→** We can use cross-coupled pFETs for amplification/restoring
- → This generalization thinking is so important!

Ideation Procedure

- Replacing TG/tri-state inverter with pass TR in MUX to reduce the number of transistors
- 2) Employing the cross-coupled pFET to restore weak "1" to strong "1"

Design Procedure

Complementary Pass Transistor Logic (CPL)

K. Yano, et al, "A 3.8-ns 16 \times 16-b multiplier using complementary pass-transistor logic," JSSC, vol. 25, no. 2, Apr. 1990, pp. 388–395

Mitigating Drivability Problem in CPL MUX

Can't We Use PMOS Pass TR?

• Sure! Why not?

XOR-XNOR Design

- ✓ Reducing the TR number thru Pass TR Logic
- ✓ Potentially decreases area, energy, and delay

Previous XOR2 Designs

•
$$Y = \overline{A}B + A\overline{B}$$

Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	0

Key Difference of Pass TR from Other Logic Families

- A single TR accepts 2 inputs to determine 1 output.
- → Chance to reduce the number of TRs for logic implementation.

CPL based XOR Design

Comparing it With CVSL

Could be faster in CPL (Why?)

How About This?

- With the output driver (inverter), full VDD output can be achieved (Think of the restoring feature of the inverter!)
- → Yes.. but It incurs the short-circuit current at the output inverter.
- → Can you improve it?

CMOSTG Design

- We can use TG instead of pass TR → CMOSTG
- Is there any other way to make it full V_{DD}?

Ideation

- 1) /XOR node should be pulled up → We should utilize PMOS
- 2) When? Condition formed by A and B is meaningless Equivalent to CMOSTG
- 3) Again, when? utilizing XOR! When XOR = 0
- 4) Thus, we can add pull-up pMOS to /XOR that is controlled by XOR.

K. Yano, Y. Sasaki, K. Rikino, and K. Seki, "Top-down pass-transistor logic design," JSSC, vol. 31, no. 6, Jun. 1996, pp. 792–803.

LEAP is Slow

- Why? /XOR is pulled up solely by A or /A while, in the CPL, the opposite path aids to charge up /XOR.
- 2) In addition, complementary output is often useful.
- → Is there any way to reduce TR number of CPL without removing the operation complementary output?

Ideation

- 1) Cross-coupled pFET is removed.
- 2) Try to find which part can be utilized to replace the cross-coupled pFET
- 3) What is the role of the cross-coupled pFET?
 - → It is to charge up Y and /Y when required.
- 4) When? Y should be charged up when XOR is raised.

Swing-Restored Pass Transistor Logic (SRPL)

A. Parameswar, H. Hara, and T. Sakurai, "A swing restored pass-transistor logic-based multiply and accumulate circuit for multimedia applications," JSSC, vol. 31, no. 6, Jun. 1996, pp. 804–809.

Limitation of SRPL

- Suppose that Y is supposed to be pulled down as A=0 and B=0, while (Y, /Y) initially is (1, 0)
- Contention occurs at the both sides, increasing the power and delay.

Ideation; Contention Mitigation

- 1) How can we make A or /A can easily pull down Y or /Y?
- 2) Not directly connect output of inverter to Y.
- 3) But we should keep the original goal being achieved, that is, pulling up Y to full VDD.
- 4) Is there any way pull-up VDD to full, while not disturbing Y pull-down?

M. Song, G. Kang, S. Kim, and B. Kang, "Design methodology for high speed and low power digital circuits with energy economized pass-transistor logic (EEPL)," Proc. 22nd European SolidState Circuits Conf., 1996, pp. 120–123.

Energy Economized Pass Transistor Logic (EEPL)

PMOS Pass TR + Cross-Coupled NMOS

- Can't we make XOR/XNOR only with A and B? (i.e., without /A and /B)?
- We can go on by relying on the facts that
 - 1) NMOS with A-B can generate XNOR and pMOS with A-B can generate XOR (highlighted below) → but output can be imperfect for some cases.
 - 2) XOR can be used to restore XNOR and vice versa.

Ideation

Constraint: Don't use /A and /B

А	В	XOR	XNOR
0	0	0	1
0	1	1	0
1	0	1	0
1	1	0	1

How about when B = 1? A = 0: XOR=1

B = 0 is problematic here

1) A = 0: XOR = 0

XOR

1) A=0: XOR=1 1) A=1: XOR=0 2) A=0: BXNOR = 1

Resultant 8T XOR-XNOR

Jinaping Hu, International Journal of Advancements in Computing Technology, 2012

Ideation Again

Α	В	XOR	XNOR
0	0	0	1
0	1	1	0
1	0	1	0
1	1	0	1

B = 1 : problem

1) A=0: XOR=1

2) A=1:XOR=0

→ XNOR can restore this

B = 0 : problem

1) A=1:XNOR=0

2) A=0: XNOR=1

→ XOR can restore this

Resultant 6T XOR-XNOR

- Can you find the limitation?
- → Due to V_{th} drop of gate level of P3 and N3, restoring is very slow

D.Radhakrishnan, IEEE Proc.-Circiiits Devices Syst., 2001

Accelerating Restoring

• Let's focus on XOR.

Α	В	XOR	XNOR
0	0	0	1
0	1	1	0
1	_ 0 _	11	0
1	1	0	1

Resultant 8T XOR-XNOR

- Can you find the limitation?
- → How can you solve the contention issue?

M. Elgamel, Great Lakes symposium on VLSI, 2003

Resultant 10T XOR-XNOR

M. Zhang, ISCAS2003

Summary

- Pass TR can be used to implement logic to reduce the number of transistor, leading to reduction in area/energy/delay.
- Various methods for designing XOR2 and XNOR2 are described to resolve the limitation of the previous structure in terms of area/energy/delay.
- Step by step ideation procedure is highly important.