Probability & Bayesian Learning

Hanwool Jeong hwjeong@kw.ac.kr

Revisit: Why We Need Probability & Statistics

- Basically, we want "the machine" can perform delicate jobs.
- Real world data is "uncertain" and "ambigous"
- Handling exception case (or outliers)
- Example

Random Variable

Though we only examine briefly, understanding probability is extremely essential for an engineer!

• A random variable **X** is a *function* mapping a probability space (**S**, **P**) into the real line **R**.

Discrete Random Variable (RV)

- Consider a set \mathcal{X} which is a finite or countable infinite set.
- With **discrete random variable** X, the probability of the event that X = x is denoted by p(X = x), or shortly p(x), where $x \in \mathcal{X}$.
- Here p() is called a probability mass function (PMF).
- PMF is an example of **probability distribution** which is a function that represents probability that a random variable have a certain value.

Continuous RV

- Suppose X is some uncertain continuous quantity.
- The probability that X lies in any interval a ≤ X ≤ b can be computed as follows.
 - Define the events $A = (X \le a)$, $B = (X \le b)$ and $W = (a < X \le b)$.
 - $p(B) = p(A) + p(W) \rightarrow p(W) = p(B)-p(A)$
 - Define the function F(q) = p(X ≤ q). This is called the cumulative distribution function (CDF) of X. Thus,

$$p(a < X \le b) = F(b) - F(a)$$

• Define $f(x) = \frac{d}{dx}F(x)$ as the **probability density function** or **pdf.**

$$P(a < X \le b) = \int_{a}^{b} f(x) dx$$

f(x) > 0 for all x, and the density should be integrated to 1

Gaussian (Normal) Distribution

• The most widely used distribution in statistics and ML:

$$\mathcal{N}(x|\mu,\sigma^2) \triangleq \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$$

- $\mu = E[X]$: mean (and mode), $\sigma^2 = var[X]$: variance
- $X \sim \mathcal{N}(\mu, \sigma^2)$ means $p(X=x) = \mathcal{N}(x | \mu, \sigma^2)$
- The CDF of Gaussian is

$$\Phi(x;\mu,\sigma^2) \triangleq \int_{-\infty}^x \mathcal{N}(z|\mu,\sigma^2) dz$$

Joint Probability

• The probability of joint event A and B is

$$p(A,B) = p(A \land B)$$

- Consider an example:
 - A is gender in KW, like Male or Female
 - B is to have pierced ear

Conditional Probability

• We define the conditional probability of event A, given that event B is true, as follows:

$$p(A|B) = \frac{p(A,B)}{p(B)} \text{ if } p(B) > 0$$

• How do we apply this probability to ML?

Bayes Rule

• Bayes rule or Bayes theorem:

$$p(X = x | Y = y) = \frac{p(X = x, Y = y)}{p(Y = y)} = \frac{p(X = x)p(Y = y | X = x)}{\sum_{x'} p(X = x')p(Y = y | X = x')}$$

Medical Diagnosis Example

- Suppose there is a test which will be positive with probability of 0.8 if one has a cancer, and you had this test.
- If the test is positive for you, what is the probability you have a cancer?
- Base rate fallacy is ignoring the prior Wrong thought

	Cancer	No Cancer
Positive		
Negative		

Example 2

- Should you work hard to get A+? vs. If you work hard, can you get A+?
- After examining my grade, I conclude that

	Got an A+	Got something else
Working Hard	18	2
Not working hard	2	8

• How about this?

	Got an A+	Got something else
Working Hard	8	2
Not working hard	12	8
	Got an A+	Got something else
Working Hard	Got an A+ 10	Got something else

Revisit the Question

• If you work hard, can you get A+?

	Got an A+	Got something else
Working Hard	18	2
Not working hard	2	8

Ocean View Room Example Let's Relate it to Machine Learning!

- Suppose that you pick a hotel ticket randomly from the draw. Then you will visit hotel you picked among A, B, and C.
- The probability they give you ocean view room are: 75%, 25%, and 50% for Hotel A, B, and C respectively.
- Please find which hotel you visit, given that you have ocean view room.

Hotel A	Hotel B	Hotel C
Ocean view	Ocean view	Ocean view
portion	portion	portion
75%	25%	50%

Ocean View Room Example (cont'd)

 Note : the probability that you have the ocean view is not important at all

Generative Classifier Example

Generative classifier specifies how to generate the data using p(x | y = c) and the class prior p(y = c) as

$$p(y = c \mid x) = \frac{p(y=c,x)}{p(x)} = \frac{p(x|y=c)p(y=c)}{p(x)}$$
Posterior

• And we can determine the class by

$$\hat{c} = \underset{c'}{\operatorname{argmax}} P(y = c' | x)$$

• This approach is called Maximum a posterior (MAP)

Application to Classification

- Revisiting the Iris flower classification
- Class $y \in \{\text{setosa, versicolor, virginica}\}, x \text{ is 4D feature}$

Bayesian Concept Learning

• Let's deep dive into MAP by looking into the meanings of each component in MAP.

$$p(y = c \mid x) = \frac{p(y=c,x)}{p(x)} = \frac{p(x\mid y=c)p(y=c)}{p(x)} \propto \frac{\text{Likelihood Prior}}{p(x\mid y=c)p(y=c)}$$

• Let's include parameter vector θ that characterizes the model.

$$p(y = c \mid x, \theta) \propto p(x \mid y = c, \theta) \times p(y = c \mid \theta)$$

Posterior Likelihood Prior

Number Game Example

- Number game is introduced in Josh Tenenbaum's PhD thesis (Tenenbaum 1999), which proceeds as follows.
- I choose some simple arithmetical concept C, such as "prime number" or "a number between 1 and 10".
- I then give you a series of randomly chosen positive examples $D = \{x_1, \ldots, x_N\}$ drawn from C, and ask you whether some new test case \tilde{x} belongs to C, i.e., I ask you to classify \tilde{x} .
- Suppose, for simplicity, that all numbers are integers between 1 and 100. Now I tell you "16" is a positive example of the concept. What other numbers do you think are positive?
 - 17? 6? 32?
 - How about 99?

Posterior Predictive Distribution

- When I say 16,
 - 17, 6, 32 is more likely than 99, etc.
- We should represent this "degree of being likely" with $p(\tilde{x}/\mathcal{D}) = probability$ that $\tilde{x} \in C$, given the data \mathcal{D}

which is called **posterior predictive distribution**.

 For D={16}, the following posterior predictive distribution is obtained by people prediction

How About with More Data?

- Now I give 8, 2, and 64 are also positive examples, which means \mathcal{D} ={2,8,16,64}
- You may say the hidden concept is "power of 2" → induction
- Posterior predictive distribution is changed into

• For $\mathcal{D}=\{16,23,19,20\}$, generalization gradient is different

We Should Emulate in Machine For

- For induction, we define hypothesis space of concepts, H, such as: odd numbers, even numbers, all numbers between 1 and 100, powers of two, all numbers ending in j.
 - The subset of ${\mathcal H}$ consistent with the ${\mathcal D}$ is **the version space**.
- After seeing $\mathcal{D} = \{16\}$, there are many consistent rules; how do you combine them to predict if $\tilde{x} \in C$?
- After seeing D = {16, 8, 2, 64}, why did you choose the rule "powers of 2" and not, say, "all even numbers", or "powers of 2 except for 32"?
- We will see Bayesian explanation for above.

Formalizing "Likelihood"

- After seeing $D = \{16, 8, 2, 64\}$, we will more likely to choose $h_{two} =$ "power of 2", rather than, $h_{even} =$ "even numbers"
- We should explain why and formalize this.
- The key is to avoid **suspicious coincidences**:

➔ If the true concept was even numbers, how come we only saw numbers that happened to be powers of two?

Quantifying Likelihood

• With the strong sampling assumption, the probability of independently sampling N items (w/ replacement) from h is

$$p(\mathcal{D}|h) = \left[\frac{1}{\operatorname{size}(h)}\right]^N = \left[\frac{1}{|h|}\right]^N$$

- This embodies that "the model favors simplest (smallest) hypothesis consistent with D." → Occam's razor
- When D = {16}, p(D|h_{two}) = 1/6 and p(D|h_{even}) = 1/50
 → The likelihood of h_{two} is higher than h_{even}
- When $\mathcal{D} = \{16, 8, 2, 64\}, p(\mathcal{D}|h_{two}) = (1/6)^4 = 7.7 \times 10^{-4} \text{ and } p(\mathcal{D}|h_{even}) = (1/50)^4 = 1.6 \times 10^{-7} \rightarrow 5000:1 \text{ likelihood ratio}$
- This quantifies the degree of suspicious coincidence

Revisiting Posterior Estimation

• The likelihood in the following corresponds to $p(\mathcal{D}|h)$.

 $p(y = c \mid x, \theta) \propto p(x \mid y = c, \theta) \times p(y = c \mid \theta)$ Posterior Likelihood Prior

- As our goal is to derive $p(h|D) \propto p(D|h) \times p(h)$ Posterior Likelihood Prior
- What we also need to examine prior term, p(h). What is the meaning of this?

Necessity of Prior

- The likelihood is higher for h' = "powers of 2 except 32" than h_{two} = "powers of 2"
- h = "powers of two except 32" seems "conceptually unnatural"
 → We should reflect this as p(h) preventing overfitting
- p(h) is subjective thus making Bayesian reasoning unreliable
- However, p(h) is useful because it reflects the background knowledge about data
- Ex) with $\mathcal{D} = \{1200, 1500, 900, 1400\} \rightarrow 400 \text{ vs. } 1183.$
 - Background 1) : the data are picked based on arithmetic rule.
 - Background 2) : the data are human cholesterol level.

→ Different background for data determines p(h) and significantly enhances the efficiency of ML.

Prior Example for Number Game

• The "unnatural" concepts of "powers of 2, plus 37" and "powers of 2, except 32" have very low prior.

Finally, Posterior

• When $\mathcal{D} = \{16\}$, the posterior is derived as follows

Posterior when $D = \{16, 8, 2, 64\}$

• Having enough data, the posterior becomes peaked on a single concept, namely MAP esimate.

MAP Estimate vs. MLE

MAP Esimate means

$$\hat{h}^{MAP} = \operatorname{argmax}_{h} p(h|\mathcal{D})$$

which can be written as

 $\hat{h}^{MAP} = \operatorname*{argmax}_{h} p(\mathcal{D}|h) p(h) = \operatorname*{argmax}_{h} [\log p(\mathcal{D}|h) + \log p(h)]$ • Since the likelihood term depends exponentially on N , and the prior stays constant, as we get more and more data, the MAP estimate converges towards the maximum likelihood estimate or MLE:

$$\hat{h}^{mle} \triangleq \operatorname*{argmax}_{h} p(\mathcal{D}|h) = \operatorname*{argmax}_{h} \log p(\mathcal{D}|h)$$

• If we have enough data, data overwhelms the prior.

MAP vs. MLE

- $p(h|\mathcal{D}) \propto p(\mathcal{D}|h) \times p(h)$
- If p(h) is constant over various h's, MAP is equivalent to MLE