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Revisit: 
Why We Need Probability & Statistics

• Basically, we want “the machine” can perform delicate jobs.

• Real world data is “uncertain” and “ambigous”

• Handling exception case (or outliers)

• Example
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Random Variable

• A random variable X is a function mapping a probability 
space (S, P) into the real line R. 

(S, P) R

X

Though we only examine briefly,

understanding probability is extremely

essential for an engineer!
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Discrete Random Variable (RV)

• Consider a set X which is a finite or countable infinite set.

• With discrete random variable X, the probability of the event 
that X = x is denoted by p(X = x), or shortly p(x), where x∈X.

• Here p() is called a probability mass function (PMF).

• PMF is an example of probability distribution which is a 
function that represents probability that a random variable 
have a certain value. 
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Continuous RV

• Suppose X is some uncertain continuous quantity. 

• The probability that X lies in any interval a ≤ X ≤ b can be 
computed as follows. 
• Define the events A = (X ≤ a), B = (X ≤ b) and W = (a < X ≤ b).

• p(B) = p(A) + p(W)  p(W) = p(B)-p(A)

• Define the function F(q) = p(X ≤ q). This is called the cumulative 
distribution function (CDF) of X. Thus,

• Define                                as the probability density function or pdf.

• f(x) > 0 for all x, and the density should be integrated to 1
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Gaussian (Normal) Distribution

• The most widely used distribution in statistics and ML:

• μ = E[X] : mean (and mode), σ2 = var[X] : variance

• X ~ N(μ, σ2) means p(X=x) = N(x|μ, σ2)

• The CDF of Gaussian is
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Joint Probability

• The probability of joint event A and B is

• Consider an example:

• A is gender in KW, like Male or Female

• B is to have pierced ear

Male Female

Pierced Ear
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Conditional Probability

• We define the conditional probability of event A, given that 
event B is true, as follows:

• How do we apply this probability to ML?
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Bayes Rule

• Bayes rule or Bayes theorem:
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Medical Diagnosis Example

• Suppose there is a test which will be positive with probability 
of 0.8 if one has a cancer, and you had this test.

• If the test is positive for you, what is the probability you have 
a cancer?

• Base rate fallacy is ignoring the prior
Wrong thought

Cancer No Cancer

Positive

Negative
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Example 2

• Should you work hard to get A+? vs. If you work hard, can you get A+?

• After examining my grade, I conclude that

• How about this?

Got an A+ Got something else

Working Hard 18 2

Not working hard 2 8

Got an A+ Got something else

Working Hard 8 2

Not working hard 12 8

Got an A+ Got something else

Working Hard 10 10

Not working hard 2 8
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Revisit the Question

• If you work hard, can you get A+?

Got an A+ Got something else

Working Hard 18 2

Not working hard 2 8
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Ocean View Room Example
Let’s Relate it to Machine Learning!

A A

A
A

B

B

C C C

Hotel Ticket Draw

Ocean view 
portion 

75%

Ocean view 
portion 

25%

Ocean view 
portion 

50%

Hotel A Hotel B Hotel C

• Suppose that you pick a hotel ticket randomly from the draw.
Then you will visit hotel you picked among A, B, and C.

• The probability they give you ocean view room are: 75%, 
25%, and 50% for Hotel A, B, and C respectively.

• Please find which hotel you visit, given that you have ocean 
view room.
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Ocean View Room Example (cont’d)

• Note : the probability that you have the ocean view is not 
important at all
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Generative Classifier Example

• Generative classifier specifies how to generate the data 
using p(x|y = c) and the class prior p(y = c) as

• And we can determine the class by

• This approach is called Maximum a posterior (MAP)

𝑝 𝑦 = 𝑐 𝒙 =
𝑝(𝑦=𝑐,𝒙)

𝑝(𝑥)
=  

𝑝(𝒙|𝑦=𝑐)𝑝(𝑦=𝑐)

𝑝(𝑥)

 𝑐 = argmax P(y = c'|x)
c'

Posterior

Likelihood Prior
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Application to Classification

• Revisiting the Iris flower classification

• Class y ∈ {setosa, versicolor, virginica}, x is 4D feature

Feature 
Extraction

x = 

8.1
2.8
5.0
1.1

Posterior
Estimation P(setosa|x) = 0.15

P(versicolor|x) = 0.75
P(virginica|x) = 0.10

argmax

versicolor
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Bayesian Concept Learning

• Let’s deep dive into MAP by looking into the meanings of each 
component in MAP.

• Let’s include parameter vector θ that characterizes the model.

𝑝 𝑦 = 𝑐 𝒙, θ ∝ 𝑝 𝒙 𝑦 = 𝑐, θ × 𝑝(𝑦 = 𝑐|θ)

Posterior

Likelihood Prior
𝑝(𝒙|𝑦 = 𝑐)𝑝(𝑦 = 𝑐)𝑝 𝑦 = 𝑐 𝒙 =

𝑝(𝑦=𝑐,𝒙)

𝑝(𝑥)
=  

𝑝(𝒙|𝑦=𝑐)𝑝(𝑦=𝑐)

𝑝(𝑥)
∝

Posterior Likelihood Prior
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Number Game Example

• Number game is introduced in Josh Tenenbaum’s PhD thesis 
(Tenenbaum 1999), which proceeds as follows. 

• I choose some simple arithmetical concept C, such as “prime 
number” or “a number between 1 and 10”. 

• I then give you a series of randomly chosen positive examples 
D = {x1 , . . . , xN} drawn from C, and ask you whether some 
new test case  𝑥 belongs to C, i.e., I ask you to classify  𝑥.

• Suppose, for simplicity, that all numbers are integers between 
1 and 100. Now I tell you “16” is a positive example of the 
concept. What other numbers do you think are positive?
• 17? 6? 32?

• How about 99?
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Posterior Predictive Distribution

• When I say 16,
• 17, 6, 32 is more likely than 99, etc.

• We should represent this “degree of being likely” with 

p(  𝑥/D) = probability that  𝑥∈C, given the data D

which is called posterior predictive distribution.

• For D={16}, the following posterior predictive distribution is 
obtained by people prediction
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How About with More Data?

• Now I give 8, 2, and 64 are also positive examples, which 
means D={2,8,16,64}

• You may say the hidden concept is “power of 2”  induction

• Posterior predictive distribution is changed into

• For D={16,23,19,20}, generalization gradient is different
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We Should Emulate in Machine For

• For induction, we define hypothesis space of concepts, H, 
such as: odd numbers, even numbers, all numbers between 
1 and 100, powers of two, all numbers ending in j.
• The subset of H consistent with the D is the version space.

• After seeing D = {16}, there are many consistent rules; how 
do you combine them to predict if  𝑥∈ C?

• After seeing D = {16, 8, 2, 64}, why did you choose the rule 
“powers of 2” and not, say, “all even numbers”, or “powers 
of 2 except for 32”?

• We will see Bayesian explanation for above.
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Formalizing “Likelihood”

• After seeing D = {16, 8, 2, 64}, we will more likely to choose 
htwo = “power of 2”, rather than, heven = “even numbers”

• We should explain why and formalize this.

• The key is to avoid suspicious coincidences: 
 If the true concept was even numbers, how come we only saw 
numbers that happened to be powers of two?
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Quantifying Likelihood

• With the strong sampling assumption, the probability of 
independently sampling N items (w/ replacement) from h is 

• This embodies that “the model favors simplest (smallest) 
hypothesis consistent with D.”  Occam’s razor

• When D = {16}, p(D|htwo) = 1/6 and p(D|heven) = 1/50
 The likelihood of htwo is higher than heven

• When D = {16,8,2,64}, p(D|htwo) = (1/6)4 = 7.7×10-4 and 
p(D|heven) = (1/50)4 = 1.6×10-7 

 5000:1 likelihood ratio

• This quantifies the degree of suspicious coincidence
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Revisiting Posterior Estimation

• The likelihood in the following corresponds to p(D|h).

• As our goal is to derive p(h|D) ∝ p(D|h)×p(h)

• What we also need to examine prior term, p(h). What is the 
meaning of this?

𝑝 𝑦 = 𝑐 𝒙, θ ∝ 𝑝 𝒙 𝑦 = 𝑐, θ × 𝑝(𝑦 = 𝑐|θ)
Posterior Likelihood Prior

Posterior Likelihood Prior
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Necessity of Prior

• The likelihood is higher for h’ = “powers of 2 except 32” than 
htwo = “powers of 2” 

• h =“powers of two except 32” seems “conceptually unnatural” 
We should reflect this as p(h) preventing overfitting

• p(h) is subjective thus making Bayesian reasoning unreliable

• However, p(h) is useful because it reflects the background 
knowledge about data

• Ex) with D = {1200, 1500, 900, 1400}  400 vs. 1183.
• Background 1) : the data are picked based on arithmetic rule.

• Background 2) : the data are human cholesterol level.

 Different background for data determines p(h) and significantly 
enhances the efficiency of ML.
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Prior Example for Number Game

• The “unnatural” concepts of “powers of 2, plus 37” and 
“powers of 2, except 32” have very low prior.

26



Finally, Posterior

• Revisiting p(h|D) ∝ p(D|h) × p(h)

• When D = {16}, the posterior is derived as follows
Posterior Likelihood Prior

Prior

Likelihood

Posterior
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Posterior when D = {16, 8, 2, 64}

• Having enough data, the posterior becomes peaked on a 
single concept, namely MAP esimate.

Prior

Likelihood

Posterior
p(h|D) ∝ p(D|h) × p(h)

28



MAP Estimate vs. MLE 

• MAP Esimate means

• which can be written as 

• Since the likelihood term depends exponentially on N , and 
the prior stays constant, as we get more and more data, the 
MAP estimate converges towards the maximum likelihood 
estimate or MLE:

• If we have enough data, data overwhelms the prior.
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MAP vs. MLE

• p(h|D) ∝ p(D|h) × p(h)

• If p(h) is constant over various h’s,  MAP is equivalent to MLE
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