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Revisit:

Why We Need Probability & Statistics

e Basically, we want “the machine” can perform delicate jobs.
* Real world data is “uncertain” and “ambigous”

* Handling exception case (or outliers)
* Example




Though we only examine briefly,

Ran d Oom Va”ab I e understanding probability is extremely

essential for an engineer!

* A random variable X is a function mapping a probability
space (S, P) into the real line R.




Discrete Random Variable (RV)

e Consider a set Xwhich is a finite or countable infinite set.

* With discrete random variable X, the probability of the event
that X = x is denoted by p(X = x), or shortly p(x), where x&Z.

* Here p() is called a probability mass function (PMF).

 PMF is an example of probability distribution which is a
function that represents probability that a random variable

have a certain value.



Continuous RV

* Suppose X is some uncertain continuous quantity.

* The probability that X lies in any interval a < X < b can be
computed as follows.
* Definetheevents A=(X<a),B=(X<b)and W=(a<X<Dh).
* p(B) = p(A) + p(W) = p(W) = p(B)-p(A)

* Define the function F(g) = p(X £ q). This is called the cumulative
distribution function (CDF) of X. Thus,

pla< X <b)=F(b)— F(a)
* Define f(x) = %F(’ ) as the probability density function or pdf.
Pla < X <) / f(x

* f(x) > 0 for all x, and the density should be mtegrated to1l



Gaussian (Normal) Distribution

* The most widely used distribution in statistics and ML:

1 2
N o) & o emar?

* u=E[X]: mean (and mode), 6% = var[X] : variance
* X~ Mu, 6%) means p(X=x) = V(x| u, 0?)
 The CDF of Gaussian is

O(x;p,0°) 2 f N (z|p, 0?)dz



Joint Probability

* The probability of joint event A and B is
p(A, B) = p(A A B)

* Consider an example:
* Alis gender in KW, like Male or Female
* Bis to have pierced ear

~ 7

Pierced Ear

kMaIe Female)




Conditional Probability

* We define the conditional probability of event A, given that
event B is true, as follows:

p(A, B)

p(A|B) = (B)

if p(B) > 0

* How do we apply this probability to ML?



Bayes Rule

* Bayes rule or Bayes theorem:

p(X =2,Y =y) p(X =z)p(Y =y|X =)

(X =Y =y) = pY =y) S p(X=a)pY =y[X =)



Medical Diaghosis Example

e Suppose there is a test which will be positive with probability
of 0.8 if one has a cancer, and you had this test.

* If the test is positive for you, what is the probability you have
a cancer?

* Base rate fallacy is ignhoring the prior
Wrong thought

Cancer No Cancer

Positive

Negative




Example 2

e Should you work hard to get A+? vs. If you work hard, can you get A+?

* After examining my grade, | conclude that

Got an A+ Got something else
Working Hard 18 2
Not working hard |2 8

* How about this?

Got an A+ Got something else
Working Hard 8 2
Not working hard |12 8

Got an A+ Got something else
Working Hard 10 10
Not working hard |2 8




Revisit the Question

* If you work hard, can you get A+?

Got an A+ Got something else

Working Hard 18 2

Not working hard |2 8




Ocean View Room Example
Let’s Relate it to Machine Learning!

* Suppose that you pick a hotel ticket randomly from the draw.
Then you will visit hotel you picked among A, B, and C.

* The probability they give you ocean view room are: 75%,
25%, and 50% for Hotel A, B, and C respectively.

* Please find which hotel you visit, given that you have ocean
view room.

Hotel A Hotel B Hotel C

Ocean view B Ocean view Ocean view

portion portion

portion

75% 25% 50%

Hotel Ticket Draw
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Ocean View Room Example (cont’d)

* Note : the probability that you have the ocean view is not
important at all



Generative Classifier Example

* Generative classifier specifies how to generate the data
using p(x|y = c¢) and the class prior p(y = c) as

Likelihood Prior
p(y=cx) _ pxly=c)p(y=c)
p(x) p(x)

ply=clx)=

Posterior
* And we can determine the class by

C = argmax P(y = c'[x)
C

* This approach is called Maximum a posterior (MAP)



Application to Classification

* Revisiting the Iris flower classification

e Class y & {setosa, versicolor, virginica}, x is 4D feature

| Feature 8.1] Posterior
1 Extraction 2 g| Estimation P(setosa|x)=0.15
| il I > P(versicolor|x) =0.75
1'1 P(virginica|x) = 0.10

argmax ‘

versicolor
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Bayesian Concept Learning

* Let’s deep dive into MAP by looking into the meanings of each
component in MAP.

_ xlv=c —c Likelihood Prior
py=cx) | PAY=OPY=0) 0 oy = Op(y = ¢)
p(x) p(x)

ply=clx)=

Posterior

* Let’s include parameter vector 0 that characterizes the model.

p(y=c|x,0)xplx|ly =c0)Xp(y=c|6)
Posterior Likelihood Prior



Number Game Example

* Number game is introduced in Josh Tenenbaum’s PhD thesis
(Tenenbaum 1999), which proceeds as follows.

* | choose some simple arithmetical concept C, such as “prime
) o ’)
number” or “a number between 1 and 10”.

* | then give you a series of randomly chosen positive examples
D={x,,..., Xy} drawn from C, and ask you whether some
new test case X belongs to C, i.e., | ask you to classify x.

* Suppose, for simplicity, that all numbers are integers between
1 and 100. Now | tell you “16” is a positive example of the
concept. What other numbers do you think are positive?

e 17?7 67? 327
* How about 99°?



Posterior Predictive Distribution

* When | say 16,
* 17, 6,32 is more likely than 99, etc.

* We should represent this “degree of being likely” with
p(X/D) = probability that X &C, given the data D

which is called posterior predictive distribution.

* For D={16}, the following posterior predictive distribution is
obtained by people prediction

Examples
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How

About with More Data?

* Now | give 8, 2, and 64 are also positive examples, which
means D={2,8,16,64}

* You may say the hidden concept is “power of 2” =» induction

* Poste

16 8 264 |
0.5

0

rior predictive distribution is changed into

|[1190 Y R I

| 1 | 1 | |

4 EI ‘|2 ‘IE 2{} 24 28 32 36 40 44 48 52 56 60 64 68 ?2 ?‘6 8{} 84 EIS 92 96 100

* For D={16,23,19,20}, generalization gradient is different

16 23 19 20 1T

0.5

0

1 1 1 1 usn i i
| |

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100
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We Should Emulate in Machine For

* For induction, we define hypothesis space of concepts, H,
such as: odd numbers, even numbers, all numbers between
1 and 100, powers of two, all numbers ending in j.

* The subset of 'H consistent with the D is the version space.

e After seeing D = {16}, there are many consistent rules; how
do you combine them to predict if x & C?

e After seeing D = {16, 8, 2, 64}, why did you choose the rule
“powers of 2” and not, say, “all even numbers”, or “powers
of 2 except for 32”7

* We will see Bayesian explanation for above.



Formalizing “Likelihood”

e After seeing D = {16, 8, 2, 64}, we will more likely to choose

_ i

hiwo = POWer of 2% rather than, h, ., = “even numbers”

* We should explain why and formalize this.

* The key is to avoid suspicious coincidences:

=>» If the true concept was even numbers, how come we only saw
numbers that happened to be powers of two?



Quantifying Likelihood

With the strong sampling assumption, the probability of
independently sampling N items (w/ replacement) from h is

p(Dlh) = Lizel(h)]N B [%]N

* This embodies that “the model favors simplest (smallest)
hypothesis consistent with D.” =» Occam’s razor

When D = {16}, p(D| h,,) = 1/6 and p(D|h,,.,) = 1/50
=» The likelihood of h,,, is higher than h

When D ={16,8,2,64}, p(D|h,,,) = (1/6)* = 7.7x10*and
p(D|h =(1/50)*=1.6x107 = 5000:1 likelihood ratio

* This quantifies the degree of suspicious coincidence

even

even

even)



Revisiting Posterior Estimation

* The likelihood in the following corresponds to p(D]h).

p(y=c|x,08)xplxly =c0)Xp(y=c|0)
Posterior Likelihood Prior

* As our goal is to derive p(h|D) o« p(D|h)xp(h)

Posterior Likelihood  Prior

 What we also need to examine prior term, p(h). What is the
meaning of this?



Necessity of Prior

* The likelihood is higher for h’ = “powers of 2 except 32” than
h...= “powers of 2”

two
* h =“powers of two except 32” seems “conceptually unnatura
=» We should reflect this as p(h) preventing overfitting

* p(h) is subjective thus making Bayesian reasoning unreliable

I”

* However, p(h) is useful because it reflects the background
knowledge about data

* Ex) with D = {1200, 1500, 900, 1400} =» 400 vs. 1183.

e Background 1) : the data are picked based on arithmetic rule.
* Background 2) : the data are human cholesterol level.

=>» Different background for data determines p(h) and significantly
enhances the efficiency of ML.



* The “unnatural” concepts of “powers of 2, plus 37” and
“powers of 2, except 32” have very low prior.

Prior Example for Number Game
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Finally, Posterior

e Revisiting p(h|D) o p(D]|h) x p(h)
Posterior Likelihood Prior
e When D = {16}, the posterior is derived as follows

" Posterior
| Il B 0 I R
| | | ° Likelihood
[ T T ] IJ | 1)

1° Prior
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powers of 2
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Posterior when D = {16, 8, 2, 64}

* Having enough data, the posterior becomes peaked on a
single concept, namely MAP esimate.
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MAP Estimate vs. MLE

* MAP Esimate means

pWMAP — aremax, p(h|D)

 which can be written as

WMAP — argmax p(D|h)p(h) = argmax [log p(D|h) + log p(h)]
h h

* Since the likelihood term depends exponentially on N, and
the prior stays constant, as we get more and more data, the
MAP estimate converges towards the maximum likelihood
estimate or MLE:

e 2 aremax p(D|h) = argmax log p(D|h)
h h

* If we have enough data, data overwhelms the prior.



MAP vs. MLE

* p(h|D) < p(D|h) x p(h)

* If p(h) is constant over various h’s, MAP is equivalent to MLE



