Simple Classification; Iris Flower

• Can you specify **x**_i and y_i?

Recall that We Learned ..

- Supervised vs. Unsupervised
- Classification vs. Regression

In Supervised Learning,

• The operations are performed in two phases

When We Use MAP for Classification

• It will apply similarly to regression (PMF vs. PDF)

• You remember what you will learn in this course?

- How can you establish model?
- \rightarrow Like the mathematical expression of P(c_i/**x**)
- ➔ More specifically or easily, parameter in the given mathematical expression format.

Example

• Simplified case

$$\mathbf{x} \xrightarrow[(x_1, x_2, x_3)]{} \textbf{Decision} \qquad \begin{bmatrix} Comparing \\ P(y=c_i/x) \text{ for} \\ i=1 \text{ and } 2 \end{bmatrix} \longrightarrow \mathbf{y} = \mathbf{c}^*$$

P(
$$y=c_1/(x_1, x_2, x_3)$$
) = 0.3($x_1^2 + 3x_2 + \log_5 x_3$)
P($y=c_2/(x_1, x_2, x_3)$) = 1- 0.3 $x_1^2 - 0.9x_2 - 0.3\log_5 x_3$
You see θ in the determined model?
To determine them is your job

Meaning of $p(D/\theta)$?

→ Can you compare $p(D/\theta_1)$ and $p(D/\theta_2)$? Note that probability is probability \propto PDF

→ Can you relate this with Number Game case? Occam's razor?

Overfitting Issue

Solution for Overfitting MAP vs. MLE w/ Abundant Data

