Linear Regression

Hanwool Jeong hwjeong@kw.ac.kr

What We Will Learn

- First, focus on how supervised learning is realized!
 - You remember? Training, then prediction.
 - General procedure for "training"
 - How Probability/Linear Algebra/Calculus are used
- Terms used in ML
- Realizing ML with python codes
- → Linear regression is good for start!

Revisit: Regression vs. Classification

• Regression is just like classification except the response variable is continuous.

Why We Need Matrix & Vector in ML

- In Iris flower example, the features are extracted in 4 variables: the length and the width of the sepals and petals, in centimeter
 - → This 4D data can be expressed with a vector

• To contain multiple data vectors or process the vector, the matrix can be used.

Backgrounds for Linear Algebra; Matrix-Vector Multiplication

- The concept of weight?
 → Importance/Influence of each feature
- Inner product?
- Usually feature vector is to be processed with a matrix A containing coefficient (Why matrix? Not inner product?)
- You know Norm? Transpose? Inverse Matrix? and Identity matrix?

Design Matrix; Expressing & Handling Many Feature Vectors

• Using subscribes, a number of feature vectors are expressed as:

$$\mathbf{x_1} = \begin{bmatrix} 8.1 \\ 2.8 \\ 5.0 \\ 1.1 \end{bmatrix}, \quad \mathbf{x_2} = \begin{bmatrix} 3.2 \\ 1.5 \\ 1.2 \\ 0.5 \end{bmatrix}, \quad \mathbf{x_3} = \begin{bmatrix} 5.1 \\ 2.6 \\ 1.3 \\ 0.2 \end{bmatrix}, \quad \mathbf{x_4} = \begin{bmatrix} 4.1 \\ 3.2 \\ 2.3 \\ 1.1 \end{bmatrix}, \dots, \quad \mathbf{x_{1000}} = \begin{bmatrix} 6.3 \\ 3.0 \\ 5.3 \\ 1.8 \end{bmatrix}$$

• N×D design matrix containing N feature vectors, X is defined as

Application for Linear Regression

- Midterm score vs. working hour
- Rental price of house vs. area
- Unemployment rate vs. age

What we should determine is ...

Linear Regression Model

• Linear regression model can be defined as

$$\hat{\mathbf{y}} = \mathbf{\theta}_0 + \mathbf{\theta}_1 \mathbf{x}_1 + \mathbf{\theta}_2 \mathbf{x}_2 + \mathbf{\theta}_3 \mathbf{x}_3 + \dots + \mathbf{\theta}_D \mathbf{x}_D$$

- \hat{y} : predicted value
- *D* : the number of feature (dimension)
- $x_i : i^{th}$ feature value
- $\theta_i : j^{\text{th}} \text{ model parameter}$
- Or with vector expression using inner product,

$$\widehat{\mathbf{y}} = h_{\mathbf{\theta}}(\mathbf{x}) = \mathbf{\theta}^{\mathsf{T}}\mathbf{x}$$

- $x_0 = 1$
- h_{θ} : hypothesis function with model parameter vector θ

D=1 Example

• We will use the vector w for the parameter vector θ to stand for "weight." Then the best fit curve can be expressed:

$$\hat{\mathbf{y}} = h_w(\mathbf{x}) = \mathbf{w}^T \mathbf{x} = \mathbf{w}_0 + \mathbf{w}_1 \mathbf{x}_1 \rightarrow \text{You should determine } \mathbf{w}$$

• How?

Residual Sum of Squares

• Residual sum of squares is defined by

$$\operatorname{RSS}(\mathbf{w}) \triangleq \sum_{i=1}^{N} (y_i - \mathbf{w}^T \mathbf{x}_i)^2$$

• Or mean of RSS, the mean square (MSE) is

$$MSE(w) = \frac{RSS(w)}{N}$$

- We will use RSS as the loss function or cost function, which evaluates how well something fits the data.
- RSS or MSE is just one of many different loss (or cost) functions

Finding the Optimal Weight

- To find MLE, or the optimal value of **w** MSE should be minimized.
- To find the minimum of MSE, the gradient of MSE is derived.

$$MSE(\boldsymbol{w}) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \boldsymbol{w}^T \boldsymbol{x}_i)^2 \rightarrow \nabla MSE(\boldsymbol{w}) = -\frac{2}{N} \sum_{i=1}^{N} (y_i - \boldsymbol{w}^T \boldsymbol{x}_i) \boldsymbol{x}_i = \vec{\mathbf{0}}$$

$$\sum_{i=1}^{N} (y_i - \boldsymbol{w}^T \boldsymbol{x}_i) \, \boldsymbol{x}_i = \sum_{i=1}^{N} y_i \boldsymbol{x}_i - \sum_{i=1}^{N} (\boldsymbol{w}^T \boldsymbol{x}_i) \boldsymbol{x}_i = \vec{\mathbf{0}}$$
$$\sum_{i=1}^{N} (\boldsymbol{w}^T \boldsymbol{x}_i) \, \boldsymbol{x}_i = \sum_{i=1}^{N} y_i \boldsymbol{x}_i$$

• With the definition of N-dimensional vector $\mathbf{y} = [y_1, y_2, ..., y_N]^T$ and the design matrix X which is predefined ,

 $\mathbf{X}^T \mathbf{X} \mathbf{w} = \mathbf{X}^T \mathbf{y}$: Normal equation

Finding the Optimal Weight (cont'd)

• The corresponding solution \hat{w} to the normal equation is called ordinary least squares or OLS solution.

$$\mathbf{X}^T \mathbf{X} \mathbf{w} = \mathbf{X}^T \mathbf{y} \quad \longrightarrow \quad \hat{\mathbf{w}}_{OLS} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

- With larger D, N or higher order regression (instead of linear) make it highly challenging to derive ŵ_{OLS}.
 ➔ In other words, computational complexity is increased.
- Is there any numerical way to find it?

Revisit the Procedure to Find \hat{w}_{OLS}

• Finding $\widehat{w}_{\mathrm{OLS}}$ starts with

Minimizing MSE
$$(\boldsymbol{w}) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \boldsymbol{w}^T \boldsymbol{x}_i)^2$$

$$\nabla MSE(\boldsymbol{w}) = -\frac{2}{N}\sum_{i=1}^{N}(y_i - \boldsymbol{w}^T\boldsymbol{x}_i) \boldsymbol{x}_i = \overline{\boldsymbol{0}}$$

or

- Note that is *VMSE* is the vector, what dose the value of each component mean?
- It directs how **w** should be changed to end up with $\nabla MSE(w) = 0$.

Gradient Descent Method

• MSE(
$$w$$
) = $\frac{1}{N} \sum_{i=1}^{N} (y_i - w^T x_i)^2$

• $w_{\text{next}} = w_{\text{present}} - \eta \nabla MSE(w) \quad \leftarrow \eta$: learning rate

Effect of Learning Rate

 The general strategy is to start with a relatively large learning rate and make it smaller with each step → learning schedule

Convexity

• We say a set S is convex if any θ , $\theta' \in S$, we have

 $\lambda\theta + (1-\lambda)\theta' \in S, \forall \lambda \in [0,1]$

• If we draw a line from θ to θ' , all points on the line lie inside the set.

• Function f(θ) is called if it is defined on a convex set S, and for any $\theta, \theta' \in S$ and any $\lambda \in [0,1]$ we have

$$f(\lambda \boldsymbol{\theta} + (1-\lambda)\boldsymbol{\theta}') \le \lambda f(\boldsymbol{\theta}) + (1-\lambda)f(\boldsymbol{\theta}')$$

Effect of Convexity

• We can always find the global optimal MLE

Gradient Descent Method vs. Stochastic Gradient Descent

• What if big data?

$$MSE(\boldsymbol{w}) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \boldsymbol{w}^T \boldsymbol{x}_i)^2$$
$$w_{next} = w_{present} - \eta \nabla MSE(\boldsymbol{w})$$

- Stochastic Gradient Decent: Only using randomly picked one x_i per step
- Mini batch Gradient Decent

Applying MLE for D=1 Example w/ Considering Probability Density

- You should determine a probability density function that fits best to the given data. → We can do this by MLE. How?
- Note that we are now apply MLE for the training phase, not prediction phase

Linear Regression w/ Gaussian Distribution Likelihood

• Linear regression is a model of form w/ Gaussian distribution,

$$p(y|\mathbf{x}, \boldsymbol{\theta}) = \mathcal{N}(y|\mathbf{w}^T\mathbf{x}, \sigma^2)$$

- What we should determine is model or θ for a given dataset \mathcal{D} p(θ/\mathcal{D}) vs. p(\mathcal{D}/θ)?
- A common way to estimate the parameters of a statistical model (=θ) is to compute the MLE (why?), which is defined as

$$\hat{\boldsymbol{\theta}} \triangleq \arg \max_{\boldsymbol{\theta}} \log p(\mathcal{D}|\boldsymbol{\theta})$$

 It is common to assume the training examples are independent and identically distributed, meaning log-likelihood is

$$\ell(\boldsymbol{\theta}) \triangleq \log p(\mathcal{D}|\boldsymbol{\theta}) = \sum_{i=1}^{N} \log p(y_i|\mathbf{x}_i, \boldsymbol{\theta})$$

Deriving MLE

 Inserting the definition of the Gaussian into the above, we find that the log likelihood is given by

$$\ell(\boldsymbol{\theta}) = \sum_{i=1}^{N} \log \left[\left(\frac{1}{2\pi\sigma^2} \right)^{\frac{1}{2}} \exp \left(-\frac{1}{2\sigma^2} (y_i - \mathbf{w}^T \mathbf{x}_i)^2 \right) \right]$$
$$= \frac{-1}{2\sigma^2} RSS(\mathbf{w}) - \frac{N}{2} \log(2\pi\sigma^2)$$

 This leads to the same results previously obtained as, which is also called as least squares

$$\mathbf{X}^T \mathbf{X} \mathbf{w} = \mathbf{X}^T \mathbf{y} \quad \Longrightarrow \quad \hat{\mathbf{w}}_{OLS} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

• What is important is the overall procedure, not the result of this case.

Focusing on Noise or Error Distribution

• RSS can be expressed if we define $\epsilon_i = (y_i - \mathbf{w}^T \mathbf{x}_i)$

$$\operatorname{RSS}(\mathbf{w}) = ||\boldsymbol{\epsilon}||_2^2 = \sum_{i=1}^N \epsilon_i^2$$

- It can be said as the noise in regression models follow zeromean Gaussian distribution with constant variance σ :

$$\epsilon_i \sim \mathcal{N}(0, \sigma^2)$$
,

General Procedure For Training Is

Maximize **p(θ/D)**

Revisit Minimizing MSE Approach for Comparing it w/ MLE or MAP

• Minimizing MSE is to minimize the following

$$MSE(\boldsymbol{w}) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \boldsymbol{w}^T \boldsymbol{x}_i)^2$$

 θ change \rightarrow MSE change

- MAP is to maximize p(θ) for given D and MLE is to maximize p(D), that is, to find θ that maximizes P(D):
 θ change → P(D) change
- For now, you can roughly say that Error↓ is equivalent to Probability ↑

You Remember Overfitting?

- It is the phenomenon that a predictive model (or ML) is too closely fit to only the training set.
- It is limitation of MLE, compared to MAP. You remember why?

Overfitting in Linear Regression How Does the Fit Look Like?

• Suppose that you can use Degree 14 polynomial fit to the following N =21 data.

• Here, the resultant **w_{ols}** is

{1, 6.560, -36.934, -109.255, 543.452, 1022.561, -3046.224, -3768.013, 8524.540, 6607.897, -12640.058, -5530.188, 9479.730, 1774.639, -2821.526}

Revisit Posterior Probability in Bayesian (Generative) Learning

Generative Classifier in posterior probability

Posterior

$$p(y = c \mid \mathbf{x}) = \frac{p(y=c,\mathbf{x})}{p(x)} = \frac{p(\mathbf{x}|y=c)p(y=c)}{p(x)} \propto \begin{array}{l} \text{Likelihood Prior} \\ p(x|y=c)p(y=c) \end{array}$$

- Through training, we find out where the data originates from, or, the hidden data generator in the form of probability distrib.
- Given data D, we can find most probable θ , by maximizing

Posterior

$$p(\theta \mid D) = \frac{p(\theta,D)}{p(D)} = \frac{p(D|\theta)p(\theta)}{p(D)} \propto \begin{array}{c} \text{Likelihood} & \text{Prior} \\ p(D|\theta) \times p(\theta) \end{array}$$

What we have done is to maximize p(D/θ), that is, MLE, or performed MAP with constant p(θ) Why?
 → With abundant data, it is not problem.

Revisit Overfitting Issue in MLE

• Overfitting

• MLE is

$$\hat{\boldsymbol{\theta}} \triangleq \arg \max_{\boldsymbol{\theta}} \log p(\mathcal{D}|\boldsymbol{\theta})$$

• MAP is

Overfitting? We Can Adopt MAP!

Posterior formulation in regression training:

$p(\boldsymbol{w} \mid D) \propto$	p(D w)	×	p(w)
Posterior	Likelihood		Prior

- So far, we assumed p(w) is uniform, i.e., w follows uniform probability distribution.
- To reduce the "wiggle" in *w*, we can assume the prior p(*w*) follows zero-mean Gaussian distribution as

$$p(\mathbf{w}) = \prod_{j} \mathcal{N}(w_j | 0, \tau^2)$$

• where $1/\tau^2$ controls the strength of prior

Performing MAP

• We should find w that maximizes $p(w \mid D) \propto p(D \mid w) \times p(w)$ where

 $p(D|w) = \mathcal{N}(y|w_0 + wTx, \sigma^2)$ and $p(w) = \prod \mathcal{N}(w_j|0, \tau^2)$

• This leads to maximize log likelihood:

$$\underset{\mathbf{w}}{\operatorname{argmax}} \sum_{i=1}^{N} \log \mathcal{N}(y_i | w_0 + \mathbf{w}^T \mathbf{x}_i, \sigma^2) + \sum_{j=1}^{D} \log \mathcal{N}(w_j | 0, \tau^2)$$

1

• That is equivalent to minimize

$$J(\mathbf{w}) = \frac{1}{N} \sum_{i=1}^{N} (y_i - (w_0 + \mathbf{w}^T \mathbf{x}_i))^2 + \lambda ||\mathbf{w}||_2^2$$

where

$$\lambda \triangleq \sigma^2 / \tau^2$$
 and $||\mathbf{w}||_2^2 = \sum_j w_j^2 = \mathbf{w}^T \mathbf{w}$

Optimal w with Regularization

• The resultant optimal **w** is

$$\hat{\mathbf{w}}_{ridge} = (\lambda \mathbf{I}_D + \mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

- This technique is known as ridge regression, or penalized least squares.
- Adding a Gaussian prior to the parameters to encourage them to be small is called regularization or weight decay.
- Note that the offset term w₀ is not regularized, since this just affects the height of the function, not its complexity.
- By penalizing the sum of the magnitudes of the weights, we ensure the function is simple.

Results of Regularization

Regularization Effect of big data

 Regularization is the most common way to avoid overfitting. However, another effective approach — which is not always available — is to use lots of data → Why?

Summary

- Linear regression through w/o probability density
- Linear regression through MLE with Gaussian likelihood
- Linear regression through MLE with Laplace likelihood handling outlier
- Linear regression through MAP with Gaussian likelihood & Gaussian prior