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What We Will Learn

* First, focus on how supervised learning is realized!
* You remember? Training, then prediction.
* General procedure for “training”
* How Probability/Linear Algebra/Calculus are used

* Terms used in ML
* Realizing ML with python codes

=» Linear regression is good for start!



Revisit: Regression vs. Classification

* Regression is just like classification except the response
variable is continuous.
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Why We Need Matrix & Vector in ML

* In Iris flower example, the features are extracted in 4 variables:
the length and the width of the sepals and petals, in centimeter

=>» This 4D data can be expressed with a vector

| Feature 8.1]
/%y |Extraction [2g
- S
1.1,

* To contain multiple data vectors or process the vector, the
matrix can be used.



Backgrounds for Linear Algebra,;
Matrix-Vector Multiplication

* The concept of weight? =» Importance/Influence of each feature

* Inner product?

* Usually feature vector is to be processed with a matrix A
containing coefficient (Why matrix? Not inner product?)

* You know Norm? Transpose? Inverse Matrix? and Identity
matrix?



Design Matrix; Expressing & Handling
Many Feature Vectors

* Using subscribes, a number of feature vectors are expressed as:

8.1 3.2 5.1 4.1 6.3
o= 28] %= |15] xi=|20] =32 ., xe= |30
5.0 1.2 1.3 2.3 5.3
1.1 0.5. 0.2. 1.1, 1.8.

* NxD design matrix containing N feature vectors, X is defined as

- x;" 7 181 28 50 1.1
X, 32 15 1.2 0.5
X3 51 2.6 13 0.2
X, 41 3.2 23 53

X004 6.3 3.0 5.3 1.8



Application for Linear Regression

* Midterm score vs. working hour
* Rental price of house vs. area

 Unemployment rate vs. age

What we should
determine is ...




Linear Regression Model

* Linear regression model can be defined as
Y =0, + 0,x; + 0,%, + 0,5 + ... + B%,
* y : predicted value
* D:the number of feature (dimension)

* x,:ith feature value
* 6 : j" model parameter

* Or with vector expression using inner product,
y = hg(x) = 0'x
* Xp=1
* hy: hypothesis function with model parameter vector 6



D=1 Example

* We will use the vector w for the parameter vector 0 to stand
for “weight.” Then the best fit curve can be expressed:

N\

y = h,(x) = wx =w, + w,x, = You should determine w

e How?




Residual Sum of Squares

e Residual sum of squares is defined by
N

RSS(w) = Z(g% —wix;)?
1=1
* Or mean of RSS, the mean square (MSE) is
RSS(w)
N

* We will use RSS as the loss function or cost function, which
evaluates how well something fits the data.

MSE(w) =

e RSS or MSE is just one of many different loss (or cost)
functions



Finding the Optimal Weight

* To find MLE, or the optimal value of w MSE should be minimized.
* To find the minimum of MSE, the gradient of MSE is derived.

MSE(W) = —2N,(y; — w'x)? > VMSE(W) = — =3I, (y, - w'x) x, = 0

§V=1(yl' —wix) x; = IiV=1 YiXi — IiV=1(WTxi)xi= 0
N N
i=1(Wix)x; = Xis 1 yx;

* With the definition of N-dimensional vectory = [y,, y,, .. YpI"
and the design matrix X which is predefined,

X'Xw = XTy : Normal equation



Finding the Optimal Weight (cont’d)

* The corresponding solution w to the normal equation is
called ordinary least squares or OLS solution.

X'Xw = X'y ™ wors=(X"X)"'X'"y

* With larger D, N or higher order regression (instead of linear)
make it highly challenging to derive ..
=» In other words, computational complexity is increased.

* |s there any numerical way to find it?



Revisit the Procedure to Find wy, ¢

* Finding w starts with
Minimizing MSE(w) = %Z’i\’:l(yi — w'x,)?
or
VMSE(w) = — %Zévﬂ(yl' - wix)x; =0

* Note that is VMSE is the vector, what dose the value of each
component mean?

* [t directs how w should be changed to end up with
VMSE (w) = 0.



Gradient Descent Method

1
* MSE(W) = & XL, (i — w'x)?

o
Wn ext

MSE ,

= Wyresent - NVMSE (w) € n :learning rate
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Effect of Learning Rate

* The general strategy is to start with a relatively large learning
rate and make it smaller with each step = learning schedule

Big learning rate Small learning rate

\/
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Convexity

 We say a set Sis convex if any 0, 0’
& S, we have

A0+ (1-A)0" € S, VA € [0,1]

 If we draw a line from 0 to ©’, all
points on the line lie inside the set.

* Function f(0) is called if it is defined on a convex set S, and for
any 6, 8' € Sand any A & [0,1] we have

FA8+ (1 —X)8") < Af(0) + (1—\)f(@)




Effect of Convexity

* We can always find the global optimal MLE

MSE A MSE A

Wi«

Wi



Gradient Descent Method vs.
Stochastic Gradient Descent

* What if big data? .
1
MSE(w) = NZ(yi — WTxi)Z
i=1

Woext = Woresent - NVMSE (W)

e Stochastic Gradient Decent: Only using randomly picked one
X. per step

 Mini batch Gradient Decent

next



Applying MLE for D=1 Example w/
Considering Probability Density

* You should determine a probability density function that fits
best to the given data. = We can do this by MLE. How?

* Note that we are now apply MLE for the training phase, not
prediction phase
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Linear Regression w/
Gaussian Distribution Likelihood

* Linear regression is a model of form w/ Gaussian distribution,
(ylx,0) = N(ylw'x,0°)
* What we should determine is model or © for a given dataset D
p(6/D) vs. p(D/6)?

A common way to estimate the parameters of a statistical
model (=0) is to compute the MLE (why?), which is defined as

~

0 = arg max log p(D|0)

* It is common to assume the training examples are independent
and identically distributed, meaning log-likelihood is

((6) £ log p(D|6) = Zlogp vi|x;, 0)



Deriving MLE

* Inserting the definition of the Gaussian into the above, we
find that the log likelihood is given by

S A 1 ;
f(ﬂ) = log [( 2'}1‘{1’2) exXp (—ﬁ(yi _ WTX?_)B)]
1=1

= ‘_—L!RSS(W} — j;r log(2mo?)

* This leads to the same results previously obtained as, which
is also called as least squares

XT'Xw = XTy ™ wors=(X"X)"'X"y

 What is important is the overall procedure, not the result
of this case.
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Focusing on Noise or Error Distribution

* RSS can be expressed if we define €; = (y?; — WTX@')

RSS(w) = ||€||2 = Ze

* It can be said as the noise in regressmn models follow zero-
mean Gaussian distribution with constant variance o:

e; ~ N(0,07),



General Procedure For Training Is

Maximize p(6/D)



Revisit Minimizing MSE Approach for
Comparing it w/ MLE or MAP

* Minimizing MSE is to minimize the following
N
1
MSEW) = ~ ) (i = W'x,)?
i=1

O change = MSE change

 MAP is to maximize p(0) for given D and
MLE is to maximize p(D), that is, to find 6 that maximizes P(D):

0 change =2 P(D) change

* For now, you can roughly say that Error, is equivalent to
Probability T



You Remember Overfitting?

* |t is the phenomenon that a predictive model (or ML) is too
closely fit to only the training set.

* |t is limitation of MLE, compared to MAP. You remember why?

25



Overfitting Iin Linear Regression
How Does the Fit Look Like?

e Suppose that you can use Degree 14 polynomial fit to the
following N =21 data.

: Overfitting |

0r

5t

10 I 1 1 )
n 5 10 18 20 =10,

* Here, the resultant wg is

{1, 6.560, -36.934, -109.255, 543.452, 1022.561, -3046.224, -3768.013,
8524.540, 6607.897, -12640.058, -5530.188, 9479.730, 1774.639, -2821.526}



Revisit Posterior Probability
In Bayesian (Generative) Learning

e Generative Classifier in posterior probability

Likelihood Prior

Posterior
_ x|lv=c =C
py=cx) _ pxly=c)p(y=¢) X p(x|y = )p(y = ¢)

p(y=clx)= o %)

* Through training, we find out where the data originates from,
or, the hidden data generator in the form of probability distrib.

* Given data D, we can find most probable 0, by maximizing

Posterior Likelihood Prior

* What we have done is to maximize p(D/0), that is, MLE, or
performed MAP with constant p(0) Why?
=>» With abundant data, it is not problem.




Revisit Overfitting Issue in MLE

* Overfitting

* MLE is
0 = arg max log p(D|6)
* MAP is



Overfitting? We Can Adopt MAP!

e Posterior formulation in regression training:

p(w|D) < p(Dlw) X p(w)

Posterior Likelihood Prior

e So far, we assumed p(w) is uniform, i.e., w follows uniform
probability distribution.

* To reduce the “wiggle” in w, we can assume the prior p(w)
follows zero-mean Gaussian distribution as

p(w) = HN(?U;;'\UJZ)

* where 1/t controls the strength of prior



Performing MAP

* We should find w that maximizes p(w | D) <« p(D|w) X
p (W) where

p(D|lw) = N(y|w, + wTx, 62) and p(wW) = HN('wj\O} %)

* This leads to maximize log likelihood: J
N

D
argmaxz log NV (yi|wo + w'x;, 02) + Z log N (w10, T2)

Wooi=1 j=1

* That is equivalent to minimize

1 N

J(w) = N Z(yz‘ — (wo + W' x;))% + A|w][3
where =1

A= 02/7% and ||w||2 = > w? =w'w



Optimal w with Regularization

* The resultant optimal w is
Wridge = (AIp + X1 X)Xy

* This technique is known as ridge regression, or penalized
least squares.

* Adding a Gaussian prior to the parameters to encourage
them to be small is called regularization or weight decay.

* Note that the offset term wj is not regularized, since this just
affects the height of the function, not its complexity.

* By penalizing the sum of the magnitudes of the weights, we
ensure the function is simple.



Results of Regularization
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Regularization Effect of big data

* Regularization is the most common way to avoid overfitting.
However, another effective approach — which is not always
available — is to use lots of data = Why?

Degree =1

80 100 120
size of training set

i}




Summary

* Linear regression through w/o probability density

* Linear regression through MLE with Gaussian likelihood

* Linear regression through MLE with Laplace likelihood
handling outlier

* Linear regression through MAP with Gaussian likelihood &
Gaussian prior



