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Review on Linear Regression

x

y
 y =w0 + w1x1

Prediction  p(y|x, w) = N(y|wTx, σ2)

MLE Training  arg max p(D|w) = arg max log p(D|w)

= arg max Σ log N(y|wTx, σ2)
w w

w

You remember Gradient Descent?
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Maximum Likelihood (MLE) vs. 
Cost Minimization

• What is the relationship between MLE vs. cost minimization?

• Revisit that MLE is

• When we define the negative log-likelihood (NLL) as

NLL = -log p(D|w) = - 𝑖=1
𝑁 log p(yi|xi, w)

 That is, minimizing NLL = MLE.

• In many cases, NLL is used as the cost function.
MLE is the cost minimizing with cost function = NLL

• Then, we can derive w* by repeatedly performing :

wnext = wpresent - η𝛻𝑁𝐿𝐿 𝒘

w w
arg max p(D|w) = arg max log p(D|w)

: Gradient Descent
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MLE = cost minimization w/ certain cost func.



• What we learned previously is linear “regression.”

• We have to derive “decision criterion” represented by w.

Regression Classification

Classification vs. Regression

x

y  y = w0 + w1x1 = wTx

p(y|x, w) = N(y|wTx, σ2)

x

y = 0 

p(y|x, w) = ?

y = 1

y

x

1

0
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Higher Dimensional or Multi-Class

• There will be more complex classifications

• We will first cover “binary” classification with 1D x! That is, 

y ∈ {0, 1}
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What We Need First is 
Probability Model

• That is, the form of PMF such as

p(D) = p(y1=1/x1)× p(y2=1/x2)× p(y3=0/x3)× p(y4=1/x4)× p(y5=0/x5)× …

 By parameterizing w, p(D) or p(y/x) becomes p(D/w) or p(y/x,w)

• Then, we can decide w based on MLE, or equivalently, 
minimizing NLL.
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p(yi = 0/xi) = w1xi p(yi = 1/xi) = 1 - w1xi

p(yi = 1/xi) = cos2(w0 + w1xi) p(yi = 0/xi) = sin2(w0 + w1xi)

p(yi = 0/xi) 
0.7

0.3

xi > w0

xi < w0

p(yi = 1/xi) 
0.3

0.7

xi > w0

xi < w0

Usually, an algorithm is named by this!



Training Strategy First!

• With proper p(D|w), the following is defined as the cost:

NLL=-log p(D|w) 
= - 𝑖=1

𝑁 log p(yi=class|xi, w)=- 𝑖=1
𝑁 log p(yi=class|xi, w)

• For binary classification, only p(yi=1|xi,w) is needed

• Then, we can apply Gradient Descent to find optimal w*

wnext = wpresent - η𝛻𝑁𝐿𝐿 𝒘

x

y

1

0
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• How about p(D|w) as follows?

• Can you determine NLL?

Example of p(D|w)

x

y
1

0
x = w0x

y
1

0

p(y=1|w)  = 
𝟏, 𝒙 > 𝒘𝟎

𝟎, 𝒙 < 𝒘𝟎

x

y
1

0
x = w0

p(y=0|w)  = 
𝟎, 𝒙 > 𝒘𝟎

𝟏 𝒙 < 𝒘𝟎
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Limitation of Abrupt & Extreme p(D|w)

• Can you decide the optimal w thru Gradient Descent?

• You cannot distinguish among different w’s or the optimal w
does not exist at all.

x

y

1

0
x

y
1

0
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We Need Soft Decision Criterion!

• To find the best w during the training process, we need soft 
boundary that can answer the following question:

To what degree does xi belong to yi=1 for the given w?

• in terms of p(yi=1/xi,w). Not,

Does xi belong to y=1 for the given w?

• Then, for the prediction phase, we will be able to answer like, 
for example, 

For given x, it will be classified into y=1 with prob = 0.7

• Not just, 

For given x, it will be classified into y=1
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Background; Sigmoid Function

• Sigmoid function sigm(x) is defined as

sigm(x) ≜
1

1+𝑒𝑥𝑝(−𝑥)
= 

𝑒𝑥

1+𝑒𝑥

• The term sigmoid means S-shaped.

 We can use this for 
denoting p(y=1/x, w)

 w can change the exact
shape of pmf by sigm(wTx)
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Linear Transformation 
in General Function

• Do you know the shape difference between f(x) vs. f(x+k)?

• Do you know the shape difference between f(x) vs. f(ax)?

• Do you know the shape difference between f(x) vs. f(ax+b)?
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Shape of Sigmoid Function

• Can you apply linear transformation?
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sigm(x) ≜
1

1+𝑒𝑥𝑝(−𝑥)
= 

𝑒𝑥

1+𝑒𝑥
 sigm(𝑤1𝑥 + 𝑤0) = 

exp(𝑤1𝑥+𝑤0)

1+exp(𝑤1𝑥+𝑤0)



Expressing PMF w/ Sigmoid
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p(y=1|w)  = 
𝟏, 𝒙 > 𝒘𝟎

𝟎, 𝒙 < 𝒘𝟎

p(y=0|w)  = 
𝟎, 𝒙 > 𝒘𝟎

𝟏 𝒙 < 𝒘𝟎

x

y
1

0
x = w0

x

y
1

0
x = w0

sigm(x) = 
𝑒𝑥

1+𝑒𝑥

p(y=1|x, w)  = sigm(w1x+w0)

p(y=0|x, w)  = 1 - sigm(w1x+w0)

y

x

1

0
x = -w0/w1

x

y
1

0
x = -w0/w1



Background; Bernoulli Distribution

• Let Y ∈ {0, 1} be a binary discrete random variable, with the 
probability that p(y=1) is θ.

• We say that Y follows a Bernoulli distribution Y ~ Ber(θ) and 
the probability mass function is defined as

Ber(y|θ)=  
θ ,y = 1
1 − θ , y = 0

• Or we can write as

Ber(y|θ) = θI(y=1)(1- θ)I(y=0)

where

I(x=k) =  
1 for 𝑥 = 𝑘
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Remember that θ is p(y=1), which is mean of y, μ(y)
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Determination of p(D|w) = p(y|x, 𝒘)
for Classification

• Putting these two previous concepts together, p(y|x, w) can 
be determined as

p(y|x, w) = Ber(y|sigm(wTx))

• How will be the shape of the sigm changed according to w?

• Sigmoid function is also known as logistic or logit function.

• This is called logistic regression due to its similarity to linear 
regression (although it is a form of classification, not regression!)

x

y
1

0
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p(y=1|x, w)  = sigm(w1x+w0)

p(y=0|x, w)  = 1 - sigm(w1x+w0)



Example

• Black dots are training data. Red circles plot p(y=1/xi,w*).

• For example, We can induce a decision rule as

• Decision boundary?

• It is not linearly separable

SAT Score
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MLE through Minimizing NLL

• With defining the mean of Bernoulli RV of y or p(yi=1) as μi, NLL 
can be determined as 

NLL(w) = - 𝑖=1
𝑁 log p(yi=class|xi, w)

= - 𝑗 log p(yj=1|xj, w)- 𝑘 log p(yk=0|xk, w)

= -  𝑖=1
𝑁 log [p(yi=1|xi, w)I(yi=1)p(yi=0|xi, w)I(yi=0)]

= -  𝑖=1
𝑁 log [𝝁i

I(yi=1)(1−𝝁i)
I(yi=0)]= -  𝑖=1

𝑁 yilog 𝝁i+(1−yi)log(1−𝝁i)

• Unlike linear regression, we can no longer write down the MLE
in closed form. Instead, we need gradient descent algorithm to 
compute it by repeatedly performing

j : indices s.t. y = 1  in D
k : indices s.t. y = 0  in D

wnext = wpresent - η𝛻𝑁𝐿𝐿 𝑤
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μ = sigm(wTx)



Derivative of Sigmoid 

• sigm(x) is

sigm(x) = 
1

1+𝑒𝑥𝑝(−𝑥)

• Then, 

𝜕sigm(x)
𝜕𝑥

= 
−𝑒𝑥𝑝 −𝑥

{1+𝑒𝑥𝑝 −𝑥 }2
= sigm(x)·{1-sigm(x)}

• Then how about the derivative of sigm(kx)?

• How about gradient of sigm(wTx) about w, ▽wsigm(wTx) ?

𝜕sigm(wTx)
𝜕𝒘

= sigm(wTx)·{1-sigm(wTx)} x
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Gradient of NLL

• Can you derive 𝛻𝑁𝐿𝐿 𝒘 ?

𝛻{− 𝑖=1
𝑁 yilog 𝝁i+(1−yi)log(1−𝝁i)}

=𝛻{− 𝑖=1
𝑁 yilog 𝑠𝑖𝑔𝑚 𝒘𝑇𝒙𝑖 +(1−yi)log(1 − 𝑠𝑖𝑔𝑚(𝒘𝑇𝒙𝑖))}

= XT(μ-y)

• Derivation: Let’s focus on the inside Σ:
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Convexity

• Given y = f(x), f’’(x) > 0   Convex

• How about multiple variable case? Like,

y = f(x1, x2) = x1
2 + 2x2

2

• How can we guarantee that the f(x1,x2) is convex?
 Using Hessian Matrix

y = f(x)

22



Convexity of NLL 
in Logistic Regression

• Gradient and Hessian of NLL:

• The components of Hessian are always larger than 0, 
(positive definite), which means that the convexity of NLL is 
guaranteed.  
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Now, We Are Ready For

• Training!

• Gradient of NLL is = XT(μ-y)
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wnext = wpresent - η𝛻𝑁𝐿𝐿 𝑤



Summary

• MLE vs. cost function 

• NLL as the general cost function 

• Probability model for logistic regression

• Given probability model, NLL derivation

• With derived NLL, you can find w*!
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Gradient Descent for NLL
in Logistic Regression

• Python coding for logistic regression

• Do simple practice for the following data:

• https://raw.githubusercontent.com/hanwoolJeong/lectureU
niv/main/testData_LogisticRegression.txt
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https://raw.githubusercontent.com/hanwoolJeong/lectureUniv/main/testData_LogisticRegression.txt


You Can Plot the Data

Working Hour

Fail

Pass

File path in the previous slide
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Defining Sigmoid & Plot 
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Implementing MLE w/ Gradient Descent

• Recall that the gradient of NLL is

XT(μ-y)

• We will declare design matrix:

• Note that μ is derived by sigm(wTx):
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Result Check
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