EiSRE rOoOo:-LI:58e |

Neutral

1% confidence

1% confidence

1% confidence

Input Image:

1% confidence

1% confidence

Classification

91% confidence

1% confidence

1% confidence

1% confidence

1% confidence

O o0 N o U1 A W N L, O

Logistic Regression

Hanwool Jeong
hwjeong@kw.ac.kr

mailto:hwjeong@kw.ac.kr

Review on Linear Regression

N

Y =W, + WiX,

Prediction = p(y|x, w) = My|w'x, 02)
MLE Training =» arg max p(D|w) = arg max log p(D|w)
W w
= arg max 2 log My|w'x, 02)
w

You remember Gradient Descent?

3

Maximum Likelihood (MLE) vs.
Cost Minimization

* What is the relationship between MLE vs. cost minimization?
=» MLE = cost minimization w/ certain cost func.

* Revisit that MLE is arg max p(D|w) = arg max log p(D|w)

 When we define the negative log-likelihood (NLL) as
NLL = -log p(D|w) = -X,;_, log p(yi|x, w)
=» That is, minimizing NLL = MLE.

* In many cases, NLL is used as the cost function.
=» MLE is the cost minimizing with cost function = NLL

* Then, we can derive w* by repeatedly performing :

Whext = Woresent - nVNLL(w) :Gradient Descent

next

Classification vs. Regression

 What we learned previously is linear “regression.”

Regression

Classification

G = = w T

p(y[x, w) = My|w'x, 0?)

AY
y=0 y=1 1l 00 GPO-®
mmmmnimm e (3 RS S
X
0= e—— >
X
ply|x, w) =7

* We have to derive “decision criterion” represented by w.

Higher Dimensional or Multi-Class

* There will be more complex classifications
* We will first cover “binary” classification with 1D x! That is,
y €1{0, 1}

What We Need First Is
Probablllty Model Usually, an algorithm is named by this!

* That is, the form of PMF such as
p(D) = p(y;=1/x;) % p(y,=1/%,) % p(y;=0/x3) % p(y,=1/x,) % p(ys=0/xs)X% ...

p(y| = O/Xi) = WqX; p(yl = 1/Xi) =1- W, X;

p(y;= 1/x) = cos?(w,+ wyx.) p(y;= 0/x;) = sin(wy+ w;X;)

0.7 Xi > Wo Xi > WO
p(y;= 0/x;) { p(y.= 1/x.) {

X; < W, X < Wy
=» By parameterizing w, p(D) or p(y/x) becomes p(D/w) or p(y/x,w)

* Then, we can decide w based on MLE, or equivalently,
minimizing NLL.

Training Strategy First!

e With proper p(D|w), the following is defined as the cost:
NLL=-log p(D|w)
=Y~ . log p(yi=class|x, w)=-Y.I_, log p(yi=class|x;, w)
* For binary classification, only p(y.=1|x,w) is needed
* Then, we can apply Gradient Descent to find optimal w*

Woext = Woresent - NV NLL(W)

next

Example of p(D|w)

 How about p(D|w) as follows?

4y Ay
1 OGD GEDO-A [E— rOe-EEne-a—
= ply=1lw) {
0 benoame > 0 ben-cane— >
X =w, X
fy
1 -OGD GEDO-AD
Q-—--mme— =
X

e Can you determine NLL?

Limitation of Abrupt & Extreme p(D|w)

* Can you decide the optimal w thru Gradient Descent?

Ay YVa

1l I — o®ma@mwo®w @ |Jeee O- OG> GO ®
i 1
1
1
|

0 benocanc- > 0 banoame—o > X

X

* You cannot distinguish among different w’s or the optimal w
does not exist at all.

We Need Soft Decision Criterion!

* To find the best w during the training process, we need soft
boundary that can answer the following question:

To what degree does x. belong to y=1 for the given w?
* in terms of p(y,=1/x,w). Not,
Does x. belong to y=1 for the given w?
* Then, for the prediction phase, we will be able to answer like,
for example,
For given x, it will be classified into y=1 with prob = 0.7
* Not just,

For given x, it will be classified into y=1

Background; Sigmoid Function

* Sigmoid function sigm(x) is defined as

1 e*

sigm(x) £

1+exp(—x)_ 1+e”*

* The term sigmoid means S-shaped.

1

0.9+

0.8F

0.7+

06

0.5F

0.4r

0.3F

0.2+

0.1

0
-10

10

v We can use this for
denoting p(y=1/x, w)

v w can change the exact
shape of pmf by sigm(w'x)

12

Linear Transformation
INn General Function

* Do you
* Do you
* Do you

<KNOW t

KNOw t

Ne S

Ne S

nape difference
nape difference

KNOw t

Ne S

nape difference

petween f(x) vs. f(x+k)?

petween f(x) vs. f(ax)?

pbetween f(x) vs. f(ax+b)?

Shape of Sigmoid Function

* Can you apply linear transformation?

1 e* exp(w, x+w,)

sigm(x) = o (or) - 11o7 => sigm(w;x + w,) =

1+exp(w, x+w,)

1

0.9F

0.8+

0.7F

0.6+

0.5F

0.4r

0.3F

0.2r

0.1F

0 1 1
-10 -5 0 5 10

Expressing PMF w/ Sigmoid

_ 11, x>w,
p(y=1]|w) —{0, X < W,
Ay
1y :
0 : >
X=W, X
y
g
0 P

sigm(x) =

p(y=1|x, w) =sigm(w, x+w,)

Background; Bernoulli Distribution

 LetY & {0, 1} be a binary discrete random variable, with the
probability that p(y=1) is ©.

e We say that Y follows a Bernoulli distribution Y ~ Ber(0) and
the probability mass function is defined as

0 y=1
Ber(vI9)={ a8 v
\ 1 0 ,y—O

e Or we can writeas Remember that 6 is p(y=1), which is mean of vy, u(y)
Ber(y|6) = B1-1)(1- ©)1v=0

where
1 for x =k

0 otherwise

I(x=k) = {

Determination of p(D|w) = p(y|X, W)
for Classification

* Putting these two previous concepts together, p(y|x, w) can
be determined as p(y=1[x, W) = sigm(w,x+w)

p(y[x, w) = Ber(y|sigm(w'x)) Py=0ix w) =1-sigm(w.x+wo)
* How will be the shape of the sigm changed according to w?
* Sigmoid function is also known as logistic or logit function.

* This is called logistic regression due to its similarity to linear
regression (although it is a form of classification, not regression!)

............. ©aD @300 @

Example

Black dots are training data. Red circles plot p(y=1/x,w*).
* For example, We can induce a decision rule as

gr) =1 <= p(y=1lx) > 0.5

" 1 'clu'-.'.&'g' o]
(7)] 0.9k i
1
« 0.8k _
e Decision boundary? o & |
- O
* Itis not linearly separable = *| &
urE 0.4 o
& os| o
C o2f O
o 0.1}
|99 oz o o

460 480 500 520 540 560 580 600 620 640

SAT Score

MLE through Minimizing NLL

* With defining the mean of Bernoulli RV of y or p(y.=1) as wu, NLL
can be determined as
NLL(w) = - Iiv=1 log p(yi=class|x;, w)

j:indicess.t.y=1 inD
=-2.; log p(y;=1]x;, w)-2; log p(y,=0[X,, W) k:indicesst.y=0 inD

= - X1 log [p(yi=1]x, w)=Up(yi=0|x, w)=0] |\ _ Gem(wx)
= - Dicq log [pV=0(1-p)v=0]= - 3117 yilog p; +(1-y;)log(1-p;)
* Unlike linear regression, we can no longer write down the MLE

in closed form. Instead, we need gradient descent algorithm to
compute it by repeatedly performing

Whext = Wpresent - NVNLL (W)

Derivative of Sigmoid

e sigm(x) is
. ()_ 1
SIemiX) = 1+exp(—x)
* Then,
osigm(x) _ —exp(-x) _ o
dx {1+exp(-x)}¥* sigm(x)-{1-sigm(x)}

* Then how about the derivative of sigm(kx)?
* How about gradient of sigm(w'x) about w, VvV sigm(w'x) ?

asigm(w'x)
ow

= sigm(w™x)-{1-sigm(w™x)} x

Gradient of NLL

* Can you derive VNLL(w)?
7{-Yi,vilog u,+(1-y,)log(1-w,)}
=V{- Z’ivzl yilog sigm(w’x;)+(1-y,)log(1 — sigm(w'x,))}
= X'(p-y)
e Derivation: Let’s focus on the inside 2:

Convexity

e Giveny =f(x), f’(x) >0 =2 Convex y = f(x)
* How about multiple variable case? Like,

y = flXg, X5) = X2 + 2X,2

* How can we guarantee that the f(x,,x,) is convex?
=» Using Hessian Matrix

Convexity of NLL
In Logistic Regression

e Gradient and Hessian of NLL:

g = %f(“f) = Z(m —yi)xi = X' (p—y)
d T T T
H — Eg(w) — Z(Vwij'f-)xa — Z :ui(l J{“"‘F)Kixa
— XT8X

 The components of Hessian are always larger than O,
(positive definite), which means that the convexity of NLL is
guaranteed.

Now, We Are Ready For

* Training!

w w

- nVNLL(w)

next — "present

e Gradient of NLL is = X"(p-y)

Summary

* MLE vs. cost function

* NLL as the general cost function

* Probability model for logistic regression
* Given probability model, NLL derivation
e With derived NLL, you can find w*!

Gradient Descent for NLL
In Logistic Regression

* Python coding for logistic regression
* Do simple practice for the following data:

e https://raw.githubusercontent.com/hanwoolleong/lectureU
niv/main/testData_LogisticRegression.txt

26

https://raw.githubusercontent.com/hanwoolJeong/lectureUniv/main/testData_LogisticRegression.txt

You Can Plot the Data

import numpy as np
import pandas as pd
import matplotlib.pylab as plt

dfLoad= pd.read_csv(’ File path in the previous slide 'y 56

xxRaw = np.array(dfload.values[:,8])

yyRaw = np.array(dfload.values[:,1])

ooy

R. .-l

plt.plot(xxRaw, yyRaw,

1I:| E - o e i e = 0§ il — S i
Pass
0.8 1
05 -
0.4 -
02 A
Fail

(0 - e — PP

0 2 4 (3 g 10

Working Hour

27

Defining Sigmoid & Plot

gmoid(x):
1 1.8/ (1+np.exp(-x))

xxTest = np.linspace(-18, 18, num=181)
plt.plot(xxTest, sipgmoid(xxTest), "k-")

10

0.8 1

0.6 -

0.4 1

0.2 1

0.0 1

-10.0 -75 50 =25 00 25 50

15

10.0

28

Implementing MLE w/ Gradient Descent

e Recall that the gradient of NLL is
X'(p-y)
* We will declare design matrix:

= len{xxRaw)
¥_bias = np.c_[np.ones([N,1]), xxRaw].T #Padding ones

y = yyRaw.reshape(N,1)
X = x_bias.T

* Note that pis derived by sigm(w'x):

eta = 8.1 B

n_iterations = lHHH

woD = np.zeros([2,1]) #initialized to ©
waDbuffer = np.zeros([2,n_iterations +l]|

for iteration in range(n_iterations):
mu = sigmoid(wGD.T.dot(x_bias)}).T

gradients= X.T.dot(mu-y)

wGD = wGD - eta*gradients)
waDbuffer[:,iteration+l] = [wGD[@], wGD[1]]

29

Result Check

= np.linspace(®, 18, num=N).reshape(N,1)
bias = np.c[np.ones([N, l]ﬁ, xxTest]
EiEmDidwaD.T.th{xxT st bias.T))

plt plutt{{T st, sigmoid(wGD.T.dot({xxTest bias.T)).T,

30

