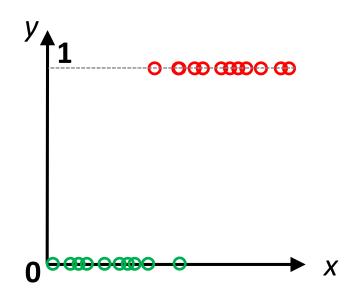
What We Practiced is the Simplest Case

- 1) One dimensional feature
- 2) Binary classification



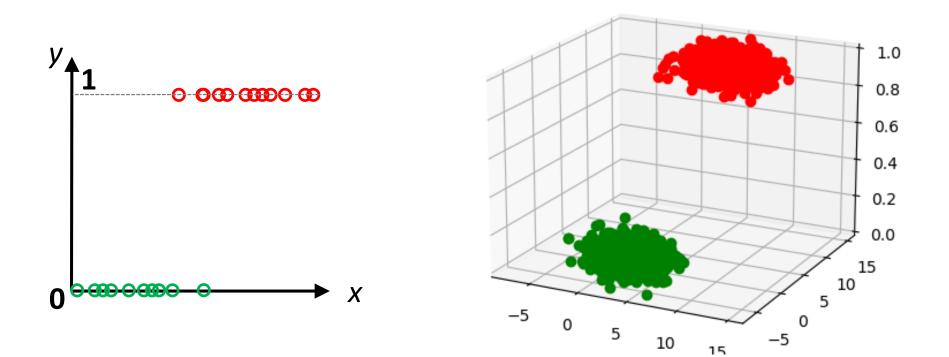
Logistic Regression for Higher Dimension / Multi-Class

Hanwool Jeong hwjeong@kw.ac.kr

Revisit p(D/w)

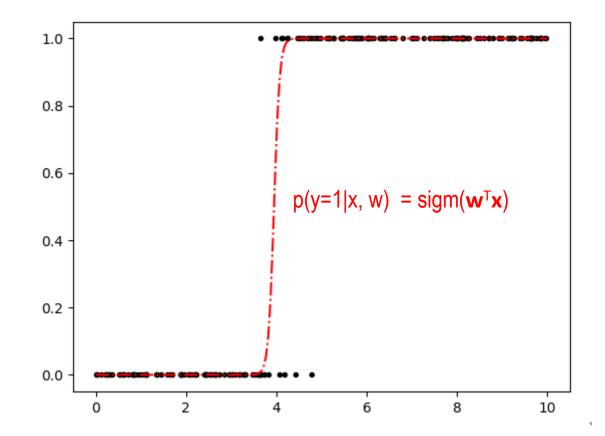
 $p(y=1|x, w) = sigm(w^T x)$

- $p(y|\mathbf{x}, \mathbf{w}) = Ber(y|sigm(\mathbf{w}^T\mathbf{x}))$
- $p(y=0|x, w) = 1 sigm(w^T x)$
- → We can expand it to higher dimension feature case



In 1D Feature,

• How about 2D?



Revisit; MLE through Minimizing NLL

- With defining the mean of Bernoulli RV of y or $p(y_i = 1)$ as μ_i , NLL can be determined as

NLL(w) =
$$-\sum_{i=1}^{N} \log p(y_i = c_{i} | \mathbf{x}_i, \mathbf{w})$$

= $-\sum_j \log p(y_j = 1 | \mathbf{x}_j, \mathbf{w}) - \sum_k \log p(y_k = 0 | \mathbf{x}_k, \mathbf{w})$
= $-\sum_{i=1}^{N} \log [p(y_i = 1 | \mathbf{x}_i, \mathbf{w})^{\mathbb{I}(y_i = 1)} p(y_i = 0 | \mathbf{x}_i, \mathbf{w})^{\mathbb{I}(y_i = 0)}]$
 $\mu = \operatorname{sigm}(\mathbf{w}^T \mathbf{x})$
= $-\sum_{i=1}^{N} \log [\mu_i^{\mathbb{I}(y_i = 1)(1-\mu_i)}]^{\mathbb{I}(y_i = 0)}] = -\sum_{i=1}^{N} y_i \log \mu_i + (1-y_i) \log(1-\mu_i)$

 Unlike linear regression, we can no longer write down the MLE in closed form. Instead, we need gradient descent algorithm to compute it by repeatedly performing

$$w_{\text{next}} = w_{\text{present}} - \eta \nabla NLL(w)$$

Revisit Gradient of NLL

• You remember $\nabla NLL(w)$?

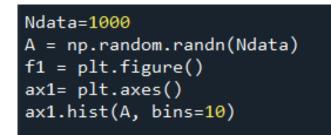
$$\nabla \{-\sum_{i=1}^{N} y_i \log \boldsymbol{\mu}_i + (1-y_i) \log(1-\boldsymbol{\mu}_i)\} \\ = \nabla \{-\sum_{i=1}^{N} y_i \log sigm(\boldsymbol{w}^T \boldsymbol{x}_i) + (1-y_i) \log(1-sigm(\boldsymbol{w}^T \boldsymbol{x}_i))\} \\ = \boldsymbol{X}^{\mathsf{T}}(\boldsymbol{\mu}-\boldsymbol{y})$$

Importance of Visualization

- To understand the concept, you should visualize it!
- Strategy
 - 1) Generate 2D binary classification dataset (using np.random module)
 - 2) Visualize the 2D dataset for your understanding
 - 3) Finding logistic regression model that fits the data
 - 4) Visualize the logistic regression model for your understanding

Generating 2D Dataset

• Generating random 1D data following Gaussian distribution

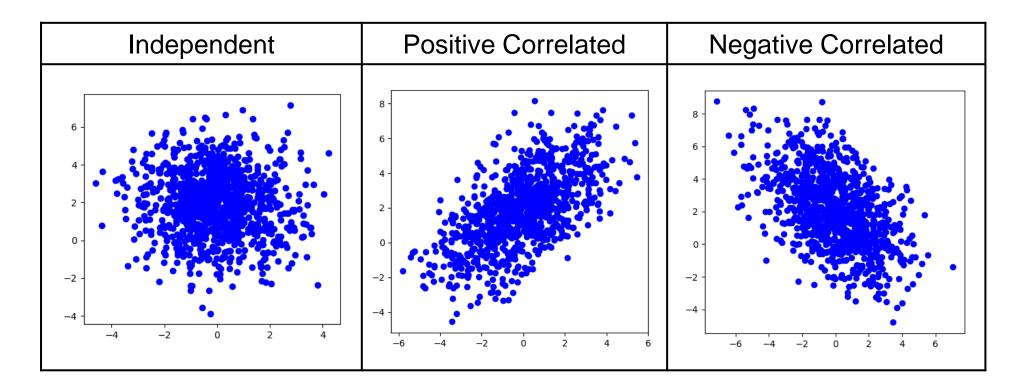


• Expand it to 2D Data

```
f2 = plt.figure()
ax2= plt.axes()
d1 = np.random.multivariate_normal(mean=[0,2], cov=[[2,-5],[-5,3]], size=Ndata)
d2 = np.random.multivariate_normal(mean=[8,6], cov=[[5,-3],[-3,8]], size=Ndata)
plt.scatter(d1[:,0], d1[:,1], c="b")
plt.scatter(d2[:,0], d2[:,1], c="r")
```

Covariance?

• 2D multivariate Gaussian data



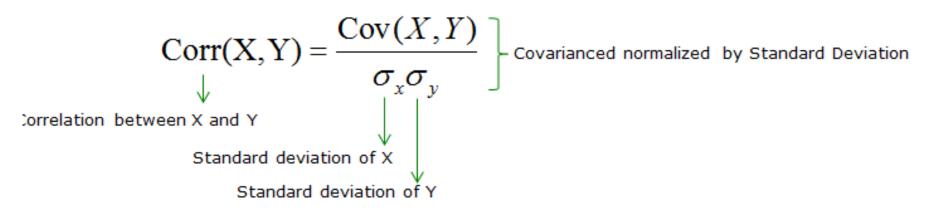
Covariance Matrix for 2D Data

• Covariance matrix Cov(A)

$$\operatorname{ov}(A) = \begin{bmatrix} \frac{\sum (x_i - \overline{X})(x_i - \overline{X})}{N} & \frac{\sum (x_i - \overline{X})(y_i - \overline{Y})}{N} \\ \frac{\sum (x_i - \overline{X})(y_i - \overline{Y})}{N} & \frac{\sum (y_i - \overline{Y})(y_i - \overline{Y})}{N} \end{bmatrix}$$

 $= \begin{bmatrix} \operatorname{Cov}(X, X) & \operatorname{Cov}(Y, X) \\ \operatorname{Cov}(X, Y) & \operatorname{Cov}(Y, Y) \end{bmatrix}$

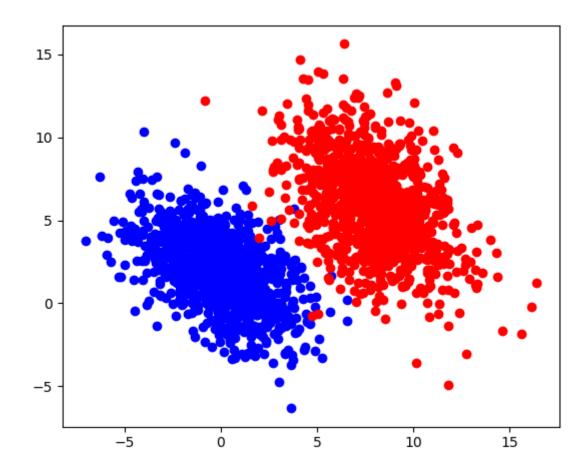
Correlation between X and Y



C

Revisit 2D Data Generating

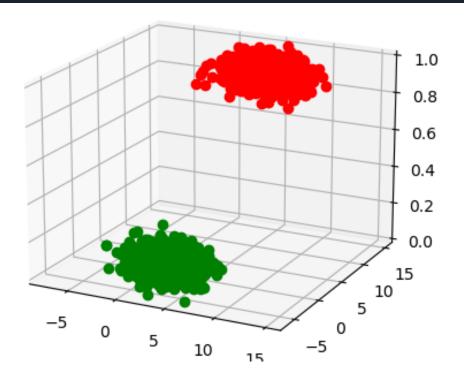
f2 = plt.figure()
ax2= plt.axes()
d1 = np.random.multivariate_normal(mean=[0,2], cov=[[2,-5],[-5,3]], size=Ndata)
d2 = np.random.multivariate_normal(mean=[8,6], cov=[[5,-3],[-3,8]], size=Ndata)
plt.scatter(d1[:,0], d1[:,1], c="b")
plt.scatter(d2[:,0], d2[:,1], c="r")



3D Plot

• You can add projection='3d' as plt.axes argument as

f3 = plt.figure()
ax3= plt.axes(projection = '3d')
ax3.plot(d1[:,0], d1[:,1], 0, 'go')
ax3.plot(d2[:,0], d2[:,1], 1, 'ro')



Defining X and y

N = Ndata
X1 = np.c_[np.ones([N,1]), d1]
X2 = np.c_[np.ones([N,1]), d2]
X = np.r_[X1, X2]
y1 = np.zeros([N,1])
y2 = np.ones([N,1])
y = np.r_[y1, y2]

Training for Reusing 1D Logistic Regression Code

```
eta = 0.1
n_iterations = 100
wGD = np.zeros([2,1])
wGDbuffer = np.zeros([2,n_iterations+1])
for iteration in range(n_iterations):
    mu = sigmoid(wGD.T.dot(x_bias)).T
    gradients = X.T.dot(mu-y)
    wGD = wGD - eta*gradients
    wGDbuffer[:,iteration+1] = [wGD[0], wGD[1]]
```

```
eta = 0.1
n_iterations = 100
wGD = np.zeros([3,1]) # 2 --> 3
wGDbuffer = np.zeros([3,n_iterations+1])
for iteration in range(n_iterations):
    mu = sigmoid(wGD.T.dot(X.T)).T
    gradients = X.T.dot(mu-y)
    wGD = wGD - eta*gradients
    wGDbuffer[:,iteration+1] = [wGD[0], wGD[1], wGD[2]] #3 dimensioned
    wGD[1], wGD[2]] #3 dimensioned
    wGDbuffer[:,iteration+1] = [wGD[0], wGD[1], wGD[2]] #3 dimensioned
    wGD[1] #3 dim
```

Contour for Function 3D Plot

• Find the following codes:

```
x1sig = np.linspace(-2, 2, 100)
x2sig = np.linspace(-2, 2, 100)
[x1Sig, x2Sig] = np.meshgrid(x1sig, x2sig)
ySig = sigmoid(x1Sig+x2Sig)
f5 = plt.figure()
ax5= plt.axes(projection ='3d')
ax5.contour3D(x1Sig, x2Sig, ySig, 50)
                                         0.8
                                         0.6
                                        0.4
                                        0.2
                                       2
   <sup>-2</sup> -1 0
                                    1
                                 0
                              -1
                 1
                           -2
                      2
```

Plotting Trained Model

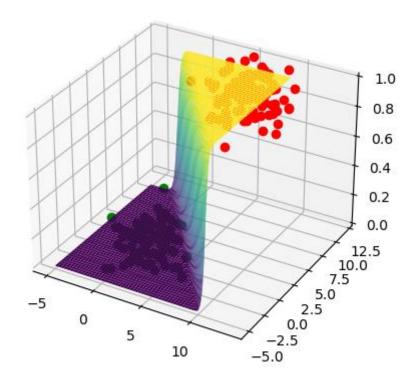
• Nothing but $p(y|\mathbf{x}, \mathbf{w}) = Ber(y|sigm(\mathbf{w}^T\mathbf{x}))$

```
x1sig = np.linspace(-5, 10, 100)
x2sig = np.linspace(-5, 10, 100)
[x1Sig, x2Sig] = np.meshgrid(x1sig, x2sig)
ySig = sigmoid( wGD[1]*x1Sig+ wGD[2]*x2Sig + wGD[0])
ax3.contour3D(x1Sig, x2Sig, ySig, 50)
```

• Or you can use other methods for 3D plot:

#ax3.contour3D(x1Sig, x2Sig, ySig, 50)
ax3.plot_surface(x1Sig, x2Sig, ySig, cmap="viridis")

Resultant Plot



Using Trained Model?

x1sig = np.linspace(-5, 10, 100)
x2sig = np.linspace(-5, 10, 100)
[x1Sig, x2Sig] = np.meshgrid(x1sig, x2sig)
ySig = sigmoid(wGD[1]*x1Sig+ wGD[2]*x2Sig + wGD[0])
ax3.contour3D(x1Sig, x2Sig, ySig, 50)

How Can We Implement Multi-Class?

- Remind that, so far, what we focus is the probability that the certain sample is classified as "1".
- That is, we can use the strategy one vs. rest

