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Limitation of K-Means
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Categorial Distribution

• Binomial distribution vs. Bernoulli distribution

• Multinomial distribution vs. Categorial distribution
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Multivariate(Joint) Gaussian Distribution

• Can be independent or correlated
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How Can Embody the Correlation?

• There can be correlation between x1 & x2

• We will use “covariance” instead of “variance” matrix.

• Correlation coefficient : 
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Application of Mixture Model

• Can you figure out the meaning of latent variable?

• We typically use Z for latent variable.
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The Multivariate Gaussian

• μ = E [x] ∈ RD is the mean vector, and Σ = cov [x] is the D × D 
covariance matrix.
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Mixture Model

• The simplest form of latent variable model (LVM) is when zi

∈ {1, . . . , K}, representing a discrete latent state. 

• With prior p(zi) = Cat(π) and likelihood p(xi|zi = k) = pk(xi), the 
overall model shown below is mixture model:
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Gaussian Mixture Model (GMM) 

• The most widely used mixture model is the mixture of 
Gaussians (MOG), also called a Gaussian mixture model (GMM), 
in the form of:

N0 N1

x

π0 =0.2 π1=0.8

x

p(xi/θ): Determined by θ

We can say θ = (π1, π2, … 
μ1, μ2, …
Σ1, Σ2, … )
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Now We Are Ready for Clustering
Using GMM

x1

x2
x2

x1

or more simply, or even more simply,

x
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Latent Variable for GMM Clustering

• We say we need determine 

θ = (π1, π2, … , μ1, μ2, … , Σ1, Σ2, … )

• To maximize 

• Then, what is the latent variable?

• We define the responsibility as the latent variable to be 
updated as follows, 

• which means the probability that xi is clustered as k for given θ
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Latent
Variable
Update

Thus, EM in GMM Clustering is

rik

update

Expectation step 

Maximization step 

Decide “θ”
For MAP or MLE

Decide latent 
variable  “Z”

MLE or 
MAP in
X vs. θ

θ = {π, μ, Σ}
update
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Responsibility?

• Suppose that we have the mixture disturb determined by 
the sum of two distribution shown below

• Then, how rik is determined?

• Every time θ is updated, rik should be updated. (Intuitive)

• How does rik change affect θ? (We will see)

x
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Calculation of rik for given θ
Mixture Model for Clustering

• Fit the mixture model (how?), then compute p(zi = k|xi,θ) 
• p(zi = k|xi,θ) = Posterior probability that xi belongs to cluster k. 

• This responsibility of cluster k for xi, and can be computed 
using Bayes rule as follows:

is soft clustering

x
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Soft? There is Also Hard Clustering

• If you pick one cluster for xi, as below,

is hard clustering
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Think How We Can “Refine” our θ

• To think how we can exploit rik to improve θ, imagine the 
situation θ is not well determined (extreme is better!)

• Derived rik, how can we improve θ
(or it would be better if you think how we can improve θ without the 
assumption we have rik!)
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Hard Clustering using a GMM

• Formulating two Gaussian Mixture Gaussian

• With K=2, can you imagine how ri1 and ri2 would be derived 
for each xi?

p(xi|θ*) = (15/49)N (xi|μ1,Σ1) + (34/49)N (xi|μ2,Σ2)

x1

x2
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Latent
Variable
Update

Revisit EM in GMM Clustering

• Focus on M step!

rik

update

Expectation step 

Maximization step 

Decide “θ”
For MAP or MLE

Decide latent 
variable  “Z”

MLE or 
MAP in
X vs. θ

θ = {π, μ, Σ}
update
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EM for GMM Clustering; E step

• We already see this!

• Deriving rik = the posterior probability that point i belongs to 
cluster k.

• The above term is called responsibility. How does look like?
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EM for GMM Clustering; M step

• M step, first, which estimates θ or potential output based on 
the latent variables

• First, for πk :

• Maximizing the expected complete data log likelihood defined as
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EM for GMM Clustering; M step

• That is, for GMM, the following should be maximized

• And it can be easily proved with the above term is 
maximized when 
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GMM Clustering

• Pseudo-code is shown

Initialize θ

while(until converge)

Estimate rij based on θ

Estimate θ based on rij
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