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Limitation of K-Means

KMeans




Categorial Distribution

e Binomial distribution vs. Bernoulli distribution

* Multinomial distribution vs. Categorial distribution



Multivariate(Joint) Gaussian Distribution

e Can be independent or correlated




How Can Embody the Correlation?

* There can be correlation between x; & x,
e We will use “covariance” instead of “variance” matrix.
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e Correlation coefficient :
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Application of Mixture Model

e Can you figure out the meaning of latent variable?

* We typically use Z for latent variable.



The Multivariate Gaussian

1 1 .
N(xp,X) £ ZRV DTS 5P —5(x—p) E7(x - p)

* u=E [x] € RPisthe mean vector, and 2 = cov [x] isthe D x D
covariance matrix.



Mixture Model

* The simplest form of latent variable model (LVM) is when z,
e {1, ..., K}, representing a discrete latent state.

* With prior p(z,) = Cat(rt) and likelihood p(x;|z. = k) = p,(x,), the
overall model shown below is mixture model:

K

p(x;|0) = Z TePk(X:]0)

k=1



Gaussian Mixture Model (GMM)

* The most widely used mixture model is the mixture of
Gaussians (MOG), also called a Gaussian mixture model (GMM),

in the form of:
We can say 0 = (i, i, ...

My My, oo
p(xi|0) = Z’MN (%3 | g 2ge) 21 2y o)
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A p(x/B) Determined by 0
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Now We Are Ready for Clustering
Using GMM

or more simply, or even more simply,
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Latent Variable for GMM Clustering

* We say we need determine

0=(m, 1, ..., Uy By vy 29, 25, o0 )
* To maximize

p(x;]0) = Zm]\f (xi |y, i)

* Then, what is the latent varlable?

* We define the responsibility as the latent variable to be
updated as follows,

A
rik = p(2i = ’f\Xz‘,}G)
* which means the probability that x; is clustered as k for given 6



Thus, EM in GMM Clustering Is

Expectation step

Decide “0”
For MAP or MLE

Decide latent
variable “Z”

Maximization step



Responsibility?

e Suppose that we have the mixture disturb determined by
the sum of two distribution shown below

* Then, how r; is determined?
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* Every time 0 is updated, r,, should be updated. (Intuitive)
* How does r,, change affect 8? (We will see)



Calculation of r;, for given 0
Mixture Model for Clustering

* Fit the mixture model (how?), then compute p(z, = k|x;,0)
* p(z; = k|x;,0) = Posterior probability that x;, belongs to cluster k.

* This responsibility of cluster k for x,, and can be computed
using Bayes rule as follows:

p(z; = k|O)p(x;|z; = k,0)
>y P(zi = K'0)p(xi|z; = k', 0)

Tik = P(Zz' = k\Xi,Q)

is soft clustering

> X



Soft? There is Also Hard Clustering

* If you pick one cluster for x;, as below,

z; = arg MAx 1), = arg max log p(x;|z; = k,0) + logp(z; = k|0)

is hard clustering



Think How We Can “Refine” our 6

* To think how we can exploit r;, to improve 6, imagine the
situation O is not well determined (extreme is better!)

e Derived r,, how can we improve 6
(or it would be better if you think how we can improve 6 without the
assumption we have r,!)
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Hard Clustering using a GMM

* Formulating two Gaussian =2 Mixture Gaussian

* With K=2, can you imagine how r, and r,, would be derived
for each x;?

p(x;10%) = (15/49) NV (x; | 11,Z,) + (34/49) NV (x| Wy, Z,)
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Revisit EM in GMM Clustering

* Focus on M step!

Expectation step

Decide “0”
For MAP or MLE

Decide latent
variable “Z”

Maximization step

1 T
e = ﬁ E Tik = E



EM for GMM Clustering; E step

* We already see this!
* Deriving r, = the posterior probability that point i belongs to
cluster k.

p(z; = k|@)p(x;|z; = k,0)
> w1 P(zi = K|0)p(xil 2 = k', 0)

mep(x:] 00 )

> (x0T )

rie = p(zi = k|x;, 0)

* The above term is called responsibility. How does look like?



EM for GMM Clustering; M step

* M step, first, which estimates 6 or potential output based on
the latent variables

* First, for m, :

— MZT“{‘_

* Maximizing the expected complete data log likelihood defined as

K
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EM for GMM Clustering; M step

* That is, for GMM, the following should be maximized
(e, Be) = )Y  riclogp(xi|0r)
k i

1 —
A gl - " )

* And it can be easily proved with the above term is
maximized when

D i TikX
Hr = e
Soorin(x — pp)(xi — )t S raexax?
by _ i Dk \ A Hi L Hi . i ik B T
ko= e — re o Hp,



GMM Clustering

* Pseudo-code is shown

Initialize ©
while(until converge)
Estimate r; based on ©

Estimate O based on ri
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