Gaussian Mixture Model Clustering

Hanwool Jeong hwjeong@kw.ac.kr

Limitation of K-Means

Categorial Distribution

• Binomial distribution vs. Bernoulli distribution

• Multinomial distribution vs. Categorial distribution

Multivariate(Joint) Gaussian Distribution

• Can be independent or correlated

How Can Embody the Correlation?

- There can be correlation between x₁ & x₂
- We will use "covariance" instead of "variance" matrix.

$$\operatorname{cov} [\mathbf{x}] \triangleq \mathbb{E} \left[(\mathbf{x} - \mathbb{E} [\mathbf{x}])(\mathbf{x} - \mathbb{E} [\mathbf{x}])^T \right]$$
$$= \begin{pmatrix} \operatorname{var} [X_1] & \operatorname{cov} [X_1, X_2] & \cdots & \operatorname{cov} [X_1, X_d] \\ \operatorname{cov} [X_2, X_1] & \operatorname{var} [X_2] & \cdots & \operatorname{cov} [X_2, X_d] \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{cov} [X_d, X_1] & \operatorname{cov} [X_d, X_2] & \cdots & \operatorname{var} [X_d] \end{pmatrix}$$

• Correlation coefficient :

$$\operatorname{corr} [X, Y] \triangleq \frac{\operatorname{cov} [X, Y]}{\sqrt{\operatorname{var} [X] \operatorname{var} [Y]}}$$

Application of Mixture Model

- Can you figure out the meaning of latent variable?
- We typically use Z for latent variable.

The Multivariate Gaussian

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) \triangleq \frac{1}{(2\pi)^{D/2} |\boldsymbol{\Sigma}|^{1/2}} \exp\left[-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right]$$

• $\mu = E[x] \in R^{D}$ is the mean vector, and $\Sigma = cov[x]$ is the D × D covariance matrix.

Mixture Model

- The simplest form of latent variable model (LVM) is when $z_i \in \{1, \ldots, K\}$, representing a discrete latent state.
- With prior p(z_i) = Cat(π) and likelihood p(x_i | z_i = k) = p_k(x_i), the overall model shown below is mixture model:

$$p(\mathbf{x}_i|\boldsymbol{\theta}) = \sum_{k=1}^{K} \pi_k p_k(\mathbf{x}_i|\boldsymbol{\theta})$$

Gaussian Mixture Model (GMM)

• The most widely used mixture model is the mixture of Gaussians (MOG), also called a Gaussian mixture model (GMM), in the form of: We can say $\theta = (\pi_1, \pi_2, ...$

$$p(\mathbf{x}_i | \boldsymbol{\theta}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_i | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \qquad \begin{array}{l} \boldsymbol{\mu}_1, \boldsymbol{\mu}_2, \dots \\ \boldsymbol{\Sigma}_1, \boldsymbol{\Sigma}_2, \dots \end{array} \right)$$

Now We Are Ready for Clustering Using GMM

Latent Variable for GMM Clustering

• We say we need determine

$$θ = (π_1, π_2, ..., μ_1, μ_2, ..., Σ_1, Σ_2, ...)$$

• To maximize

$$p(\mathbf{x}_i|\boldsymbol{\theta}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_i|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

- Then, what is the latent variable?
- We define the responsibility as the latent variable to be updated as follows,

$$r_{ik} \triangleq p(z_i = k | \mathbf{x}_i, \boldsymbol{\theta})$$

• which means the probability that x_i is clustered as k for given θ

Thus, EM in GMM Clustering is

Responsibility?

- Suppose that we have the mixture disturb determined by the sum of two distribution shown below
- Then, how r_{ik} is determined?

- Every time θ is updated, r_{ik} should be updated. (Intuitive)
- How does r_{ik} change affect θ ? (We will see)

Calculation of r_{ik} for given θ Mixture Model for Clustering

- Fit the mixture model (how?), then compute $p(z_i = k | \mathbf{x}_i, \boldsymbol{\theta})$
 - $p(z_i = k | \mathbf{x}_i, \mathbf{\theta}) = Posterior probability that x_i belongs to cluster k.$
- This responsibility of cluster k for x_i, and can be computed using Bayes rule as follows:

$$r_{ik} \triangleq p(z_i = k | \mathbf{x}_i, \boldsymbol{\theta}) = \frac{p(z_i = k | \boldsymbol{\theta}) p(\mathbf{x}_i | z_i = k, \boldsymbol{\theta})}{\sum_{k'=1}^{K} p(z_i = k' | \boldsymbol{\theta}) p(\mathbf{x}_i | z_i = k', \boldsymbol{\theta})}$$

is soft clustering

Soft? There is Also Hard Clustering

• If you pick one cluster for x_i, as below,

$$z_i^* = \arg \max_k r_{ik} = \arg \max_k \log p(\mathbf{x}_i | z_i = k, \theta) + \log p(\mathbf{z}_i = k | \theta)$$

is hard clustering

Think How We Can "Refine" our θ

- To think how we can exploit r_{ik} to improve θ, imagine the situation θ is not well determined (extreme is better!)
- Derived r_{ik} , how can we improve θ (or it would be better if you think how we can improve θ without the assumption we have r_{ik} !)

Hard Clustering using a GMM

- Formulating two Gaussian → Mixture Gaussian
- With K=2, can you imagine how r_{i1} and r_{i2} would be derived for each x_i?

 $p(\mathbf{x}_i | \boldsymbol{\theta^*}) = (15/49) \mathcal{N}(\mathbf{x}_i | \boldsymbol{\mu_1}, \boldsymbol{\Sigma_1}) + (34/49) \mathcal{N}(\mathbf{x}_i | \boldsymbol{\mu_2}, \boldsymbol{\Sigma_2})$

Revisit EM in GMM Clustering

EM for GMM Clustering; E step

- We already see this!
- Deriving r_{ik} = the posterior probability that point i belongs to cluster k.

$$r_{ik} \triangleq p(z_i = k | \mathbf{x}_i, \boldsymbol{\theta}) = \frac{p(z_i = k | \boldsymbol{\theta}) p(\mathbf{x}_i | z_i = k, \boldsymbol{\theta})}{\sum_{k'=1}^{K} p(z_i = k' | \boldsymbol{\theta}) p(\mathbf{x}_i | z_i = k', \boldsymbol{\theta})}$$
$$= \frac{\pi_k p(\mathbf{x}_i | \boldsymbol{\theta}_k^{(t-1)})}{\sum_{k'} \pi_{k'} p(\mathbf{x}_i | \boldsymbol{\theta}_{k'}^{(t-1)})}$$

• The above term is called **responsibility**. How does look like?

EM for GMM Clustering; M step

- M step, first, which estimates θ or potential output based on the latent variables
- First, for π_k :

$$\pi_k = \frac{1}{N} \sum_i r_{ik} = \frac{r_k}{N}$$

Maximizing the expected complete data log likelihood defined as

$$Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t-1)}) \triangleq \mathbb{E}\left[\sum_{i} \log p(\mathbf{x}_{i}, z_{i} | \boldsymbol{\theta})\right] = \sum_{i} \mathbb{E}\left[\log\left[\prod_{k=1}^{K} (\pi_{k} p(\mathbf{x}_{i} | \boldsymbol{\theta}_{k}))^{\mathbb{I}(z_{i}=k)}\right]\right]$$
$$= \sum_{i} \sum_{k} \mathbb{E}\left[\mathbb{I}(z_{i}=k)\right] \log[\pi_{k} p(\mathbf{x}_{i} | \boldsymbol{\theta}_{k})]$$
$$= \sum_{i} \sum_{k} p(z_{i}=k | \mathbf{x}_{i}, \boldsymbol{\theta}^{t-1}) \log[\pi_{k} p(\mathbf{x}_{i} | \boldsymbol{\theta}_{k})]$$
20

EM for GMM Clustering; M step

• That is, for GMM, the following should be maximized

$$\ell(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) = \sum_k \sum_i r_{ik} \log p(\mathbf{x}_i | \boldsymbol{\theta}_k) \\ = -\frac{1}{2} \sum_i r_{ik} \left[\log |\boldsymbol{\Sigma}_k| + (\mathbf{x}_i - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}_k^{-1} (\mathbf{x}_i - \boldsymbol{\mu}_k) \right]$$

 And it can be easily proved with the above term is maximized when

$$\boldsymbol{\mu}_{k} = \frac{\sum_{i} r_{ik} \mathbf{x}_{i}}{r_{k}}$$
$$\boldsymbol{\Sigma}_{k} = \frac{\sum_{i} r_{ik} (\mathbf{x}_{i} - \boldsymbol{\mu}_{k}) (\mathbf{x}_{i} - \boldsymbol{\mu}_{k})^{T}}{r_{k}} = \frac{\sum_{i} r_{ik} \mathbf{x}_{i} \mathbf{x}_{i}^{T}}{r_{k}} - \boldsymbol{\mu}_{k} \boldsymbol{\mu}_{k}^{T}$$

GMM Clustering

• Pseudo-code is shown

Initialize θ while(until converge) Estimate **r**_{ij} based on **θ** Estimate **θ** based on **r**_{ij}

$$\pi_k = \frac{1}{N} \sum_i r_{ik} = \frac{r_k}{N}$$

Iteration 1