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Classification Data

• They are linearly separable, so we can adopt linear boundary:
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How About This Data?
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Transforming Data

• Make it linearly separable by transformation of Φ(
𝑥1

𝑥2
) =

𝑥1
2

𝑥2
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2𝑥1𝑥2
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Can you Classify This?

• We call this XOR classification (Why?)
 It is not linearly distinguishable

More 
simply
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Transforming Data;
Increasing Dimension

• Becomes linearly separable

(0,1) (1,1)

(0,0) (1,0)
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Transformation Example

• Φ(
𝑥1

𝑥2
) =

𝑥1

𝑥2

𝑥1𝑥2
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Linearizing Decision Boundary

• With proper transformation Φ, 
 Change the environment
 In changed world, we do the 

1) training (e.g., MLE, optimization)
And 2) prediction.
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Or, 

• With proper transformation Φ to D-dimensional vector, the 
data becomes linearly separable in “higher” Q dimension.

• Usually, “much higher” dimension. That is, Q>> D
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Generally, More Likely to be 
Linearly Separable in Higher Dimension

• w/o Thinking, Φ([x1, x2]
T) = [𝑥1
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𝟓, 𝒙𝟏

𝟏𝒙𝟐
𝟒, 𝒙𝟏

𝟓]

[𝒙𝟏, 𝒙𝟐]
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However, 
Higher Dimension Increases Complexity

• Efficiency/Complexity .. What do these terms mean in ML?

• We start from that we want to use “linear boundary” for the 
efficiency and reducing the computational complexity.

• To stick to use “linear boundary”, we make the data 
separable by exploiting high dimension.

• Is it reasonable? It increases the computational cost as well.

• During the optimization (MLE) or prediction, we require a 
number of vector-matrix calculation.
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Motivation for Kernel Trick

• As explained, Q >> D, thus the calculation of the following is 
highly complex, increasing computational costs.

Φ(x)•Φ(x’) = Φ(x)TΦ(x’)

• But how about there is a function we can calculate the 
above in the original dimension space, RD. That is, 

K(x, x') = Φ(x)•Φ(x’) = Φ(x)TΦ(x’)

• Then, we can calculate the inner product in RQ (representing 
similarity in RQ) in the space of RD, with reduced complexity.

• The above K(x, x’) is called the kernel function, and this 
technique is called kernel trick.

(x•x'+3)5

3|x+x'|2+4ex)

12



Example 

• Given x and y in R3,

• And the transformation to R9 is defined as

• Inner product

• We can use kernel function as follows.
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Kernel Function Defined by Mercer
Mercer’s Theorem

• If there exists a function Φ mapping x∈ RD to RQ such that

• Then, we call this (Mercer) kernel function

• Typically, it is symmetric and used for representing similarity, 
but these are not required condition. 
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Various Kernel Function

• Radial basis function or RBF kernel or Gaussian kernel

• Polynomial kernel

• Sigmoid kernel or tanh kernel 
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• Using Taylor expansion,

Why RBL is Effective
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Revisit This!

• Now we can use k-means clustering or k-NN classification by
kernelized k-means or kernelized k-NN

Calculation complexity may not be exceedingly increased with trick!
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Revisit Ridge Regression

• Linear regression

• To prevent overfitting

which is the result of minimizing 

 y = hw(x) = wTx : Hyperplane
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Dual Problem

• Multiplying (XTX +λID) both side, 

 XTXw + λw = XTy

λw = Xty - XTXw = XT(y- Xw) w = XT  1 λ (y - Xw)

• Let the latter part  1 λ (y- Xw) = α, 

(y- Xw) = λα y- XXTα = λα y = (λIN + XXT)α

α = (λIN + XXT)-1y

• Defining XXT = G, gram matrix, which consists of only xi∙xj

α = (λIN + G)-1y w = XTα = XT(λIN + G)-1y

• Compare the two terms for w

w = (XTX + λID)-1XTy  = XT(λIN + G)-1y
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Kernel Trick for Ridge Regression

• Compare the two terms for w

w = (XTX + λID)-1XTy  vs. w = XT(λIN + G)-1y

• Imagine that the kernel trick is applied for MLE.

• Note that when G is derived, we do not need to know 
mapping function Φ, but only the kernel function.
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General Step for Applying Kernel Trick

• Suppose that we do not want to linear model for various ML 
algorithms.

• However, the data does not show linear characteristics.

• First, we linearized the data into higher dimension.

• Then, we run the algorithm in that transformed higher 
dimension (training or prediction) w/ reduced calculation 
complexity thru kernel trick.

• Often, we do not need to know mapping function but only 
needs the kernel function.
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Checkpoints

Why do we apply kernel trick?

What is the kernel function?

What is the general step for applying kernel function to ML 
algorithm?

Coming up next : Lagrange multiplier
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