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Implicit Function Expression &
Concept of Gradient

 Plane or line

e Circle



Minimizing or Maximizing Objective w/
Constraint

* Suppose that we have the following problem
Minimize f(x,y) = ax+by
subject to g(x,y) = x?+y?=r
* Can you see the relationship between f(x,y) and g(x,y) =0



Lagrange Multiplier

* Let’s introduce an auxiliary function

L= f(XIy) _ )\g(xly)

* Then gradient of this function should be 0 for solving the
optimization problem.
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Generally, for N dimensional vector case,
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Multiple Constraints?

e Suppose that we should minimize or maximize f(x,y,z)
subject to h(x,y,z) = D and g(x,y,z) =C

e Can you revise Lagrange multiplier method?
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For Multiple Constraints

* If there are M constraints, there are scalars A, A,, .... ,Ay
such that

M M
VHx) =Y MVa(x) <<=  Vf(x)-> MVg(x)=0.
k=1 k=1

* Then auxiliary function can be generalized to
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* Then, solve

VF(x) = Yty A Vagi(x) =0
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Handling Inequality Constraints

e Suppose that
Minimize f(x)
subject to g(x) <0
* Auxiliary function
L =f(x) + pg(x)

* Then solve not only I, ,L = 0 but also
ug(x*) =0
u=0



Meaning of gu-g(x) =0

1) g(x) constraint has no meaning = p=0 “ /)
,(/(x)/()\\@ |

2) Optimal pointis g(x) =0




Meaning of u20

 When g(x*) =0, that is 2) case in the previous slide,
* From VL=0,
Vi(x)+ulg(x) =0
Vf(x) = -uVg(x)



Handling “Multiple”
Inequality Constraints

e Suppose that
Minimize f(x)
subjecttogi(x)<0 fori=1,.., M

* Auxiliary function

L =f(x) + X" ug(x)
* Then solve notonly ¥, ,L =0 butalso

ng(x*)=0
;20

Karush—Kuhn-Tucker (KKT) conditions



Checkpoints

v'Intro to kernel trick
v'Lagrange multiplier & KKT condition
v'SVM classification model & kernel trick application



