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Can Perceptron Solve XOR Problem?

* Linearly non-separable dataset cannot be classified by the
perceptron [Minsky, 1969].

* However, in 1974, Werbos’s dissertation says linearly non-
separable dataset can be classified by the perceptron

through multi layers.
=» That is multi layer perceptron can solve XOR problem.
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Revisit: How Do We Handle Linearly
iInseparable Data in SVM?
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Can data be transformed
using linear operation
(=inner product) followed
by non-linear sign

G lize thi dure! function? => Let’s think over how
eneralize this procedure: erceptron classifies data

1) Transformation of data to be linearly separabFe
2) Linearly separation in the transformed space

\ \,\Xo =1
X2 Ne

ldeation!

A
o
® (o) W
v O y
y =-1 W2
<|> ® > X, - d
O,



You Should Feel
What Perceptron Can Do

* |t is nothing but data transformation!
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Transformation of Dataset

* Key idea is to transfer the data into new space.
* X;-X, space =¥ z,-z, space

* Linearly non-separable =» Linearly separable?
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Step2 : Determines z,
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Can you Determine W Matrix?
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Multi Layer Perceptron (MLP)

* After became linearly separable in z,-z, plane, we can do the
same what we did previously, forming MLP

1st layer perceptron =» Successfully classifying XOR data
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General Structure of MLP

* Please note how the final output configuration looks like

Two layer Three layer

Hidden layer Hidden layer




Weight Component Representation

* Please note how the final output configuration looks like

Two layer

Three layer
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Weight Matrix Representation

* Please note how the final output configuration looks like

Two layer Three layer
~~Zo=1
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Form of W Matrix

Xl‘ _Zl'
X Z
) —xd— 'Zp'

From now on, you just simply think,
“Oh, There is W matrix
which can transform x into Z.
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Operation Representation in MLP

* For example, W) [ooks like
RCONNEY (D]

Wioo W11 0 Wig

(1) (1) (1)

wm =20 War 0 Wy
D@ @
Woo  Wp1 77 Wpg |

* For two layer perceptron with activation function of f
1t layer : z; = flw;gXg + WigXq + oo + WyXy oo + WigXg)= f(w;ox)
That is, z = fW1)x)

Output (=2M) layer : §= f(W®@z) = AW2f(WL)x))

 How about for three layer perceptron?



Deep MLP

 More than two layers (3, 4, ...)
* Not necessarily transform data being linearly separable then classify.

=» Arbitrary operations are performed in hidden layers.
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Checkpoints

v Applying perceptron XOR data through MLP
v'Matrix representation for MLP: ¥ =f(W@f(Wx))
v'Deep MLP

v'Coming up next: how can we determine W? = training!
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General Procedure for Training

1) Defining cost/loss function J(0)
2) Then minimizing cost function (MLE vs. MAP)

* MLE cost function is derived based on p(D/9).
* Some transform is applied for mathematical convenience.
* For example, NLL = -log p(D/©) or (*2)NLL?, ....

e Gaussian distribution is used for PDF, minimizing the square
of Euclidean distance, ||y- y||?>, becomes the cost function.

 y=output predicted value by model
* y=output given by the training set (answer)

e After the cost function is given, differentiation or gradient
descent can be used.

=0 -nVJ(6)

next = present



Cost Function Development
In Training for MLP

e Cost function? For each sample, we can consider the
following as cost function.

1y; — yill?
* How about for all samples? We have the design matrix X.

e Saying Y= F(X) where F is overall MLP classifier for given 'Y,
then the cost becomes

Y —Y||2=llF (x) - YII?
* The training is to find W* that minimizes the above. That is,
W* = argmin||F (X) — Y||?
* It should be noted that F(\A}() = F(X|W)



Applying GD Method

* Defining a cost function J(W) as follows for mathematical
convenience.

1 110
(W) =~ (IF(X) = YII2=2 [[Y = Y||2
* For MLP, the gradient descent to find W* is

1) _ 1 o/
W()_W()_n J(l)
2) 2 0
W()_W()_n J(Z)
3) — 3 0

* We should find the expression for the above.



Revisit the Location of W®

 Which one Is easier to find out?




Starting From a Component of WG)
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GD for WG

* For each m, 6., can be defined, thus

0J - , 3
3) =V — Ym)f (Wgn) ° u) U = Ol
ml

ow

* Defining 6 =[8,, ..., 86]"and u =[u,, ..., u ]

W)= W) 7 ;{3) = WO - nuT
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We Need f'(°);
Choice of Activation Function

* We need differentiable activation function such as sigmoid
or tanh, instead of sign function.

f(x) as sign function or sgn(x) /—




What We Did iIs

aJ
(3) = W) = W03 - T
W= W -1 — 5 = W -nou
‘/"\XOZ'I (:—\120:1 (:—\: o=
\ 2
A O OO
W3 - For prediction,

&

et -\l ©

A I, 9 AWCAWESAWX)
\/

\ y

LN
AL




How About W(@)? {

o) _10(|Y-Y]» _ 10560y’

It may affect all outputs
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GD for W®)

o) =g f W e 2) S (G- v (WS e w) w)

(2) —
anj

* For each [, y, can be defined as
V='W 0 2) St [T = v f (WS o ) W) ]
= f' W 0 2) e {8,055 }

 Then,

o
(2) ~ Y4
6wlj

* Definingy =[y;, .., V,]'&z=[zy, ..., Z,]'

o)
W =We- g WD - W@ -nyz"  you should get a feel
for the terms
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We Can Extend it to W®

e Calculating B for each j,

7 riar(1 2
B=1 (W]( ' o x) Y1 {VlWl(j )}
* Then, with a vector definition B = (B, B,, ... B,)

W@ = W) - g = W - npxT



Direction?




Training Algorithm
(Mini-batch version)

Initialize W), W), WG) properly

Until (No change):
Extracting n' samples from X to form X’
AWW =0, AW =0, AWB) =0
for each comp of X’:

z:f(W(l)x)

u=f(Wlz)

yh=f(WBu)

6 = (yh-y) x f(WEh) #cx1 You can see the W is

y = 8eWB) x f/(W2z) #qx1 determined in backward

B=vy o/ (2 x F(Wlz) #px 1

W) = WB) - (1/n")néu”
w2 = W) _ (1/n')77va
w = w_ (1/n’)nﬁxT

=» Called error back(ward) propagation
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Prediction

e At the output stage, the softmax function is utilized for deriving
probability (soft decision)

* For hard decision, m* =argmax y

Softmax function

sy - _ exp(,)
o) = St en 5

Ny oo NN
72N/
%‘»{‘",5“{)\?1\ A

\/
K

[2,0.4,0.2]
> [0.73, 0.15, 0.12]

=» Called error forward propagation
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Limitation of Deep Layer

* Large computation
* Vanishing/Exploding gradient
* Overfitting risks



Enable of Deep Layer: Deep Learning

* Large computation
=» Development of high performance hardware
=» Use of more efficient algorithm such as CNN
* Vanishing/Exploding gradient

=» Use of improved activation function such as RELU or its
variants

=>» Use of cross-entropy or LLE for cost function
* Overfitting risks
=>» Development of various regulation techniques



Deep Learning from
Deep MLP (Deep MLP)
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Package for Deep Learning in Python;
Tensorflow

* Using tensorflow developed by google

 Compatible with scklearn (tf.learn)
* Various high-level APl such as Keras or Pretty Tensor
* Visualization is easy with TensorBoard

e https://www.tensorflow.org/
* Install tensorflow package by typing in Anaconda prompt:

conda install tensorflow


https://www.tensorflow.org/

Checkpoints

v'Backward propagation for training MLP
v'Deep learning and its limitation
v'Coming up next: Tensorflow for python coding MLP



